L(s) = 1 | + (−0.707 − 0.707i)2-s + (0.382 − 0.923i)7-s + (−0.707 + 0.707i)8-s + (0.707 − 0.707i)9-s + (1.84 + 0.765i)11-s + (−0.923 + 0.382i)14-s + 1.00·16-s − 1.00·18-s + (−0.765 − 1.84i)22-s + (0.923 + 0.382i)23-s + (−0.707 + 0.707i)25-s + (0.382 + 0.923i)29-s + (0.923 − 0.382i)37-s + (−0.707 + 0.707i)43-s + (−0.382 − 0.923i)46-s + ⋯ |
L(s) = 1 | + (−0.707 − 0.707i)2-s + (0.382 − 0.923i)7-s + (−0.707 + 0.707i)8-s + (0.707 − 0.707i)9-s + (1.84 + 0.765i)11-s + (−0.923 + 0.382i)14-s + 1.00·16-s − 1.00·18-s + (−0.765 − 1.84i)22-s + (0.923 + 0.382i)23-s + (−0.707 + 0.707i)25-s + (0.382 + 0.923i)29-s + (0.923 − 0.382i)37-s + (−0.707 + 0.707i)43-s + (−0.382 − 0.923i)46-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2023 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0883 + 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2023 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0883 + 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9661369087\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9661369087\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 + (-0.382 + 0.923i)T \) |
| 17 | \( 1 \) |
good | 2 | \( 1 + (0.707 + 0.707i)T + iT^{2} \) |
| 3 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 5 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 11 | \( 1 + (-1.84 - 0.765i)T + (0.707 + 0.707i)T^{2} \) |
| 13 | \( 1 + T^{2} \) |
| 19 | \( 1 - iT^{2} \) |
| 23 | \( 1 + (-0.923 - 0.382i)T + (0.707 + 0.707i)T^{2} \) |
| 29 | \( 1 + (-0.382 - 0.923i)T + (-0.707 + 0.707i)T^{2} \) |
| 31 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 37 | \( 1 + (-0.923 + 0.382i)T + (0.707 - 0.707i)T^{2} \) |
| 41 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 43 | \( 1 + (0.707 - 0.707i)T - iT^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 + (0.707 + 0.707i)T + iT^{2} \) |
| 59 | \( 1 + iT^{2} \) |
| 61 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 67 | \( 1 + 2T + T^{2} \) |
| 71 | \( 1 + (-0.923 + 0.382i)T + (0.707 - 0.707i)T^{2} \) |
| 73 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 79 | \( 1 + (0.923 + 0.382i)T + (0.707 + 0.707i)T^{2} \) |
| 83 | \( 1 - iT^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + (0.707 - 0.707i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.440888415987589787477036946425, −8.710623144643989709636644998879, −7.58573656518475483836389561599, −6.88967376876402572895513532821, −6.21113355212129663578273647691, −4.92732032366149855920117964094, −4.08940856918823806726180056215, −3.26989821514281437530566510572, −1.63414425192825617163656292620, −1.20016023370048981756028957924,
1.31052656607063219621962303672, 2.66018212906417337310665502048, 3.83323549652810475577779806078, 4.67759018749887159997732209863, 5.93225777462942402000030949329, 6.42332505830169799289606616637, 7.25677124115379301922496081660, 8.120243039050006845658217789735, 8.623055764698917490286944725755, 9.295210370885252608384589146987