L(s) = 1 | + (−0.437 − 0.437i)2-s + (−0.236 − 0.570i)3-s − 0.618i·4-s + (1.49 − 0.619i)5-s + (−0.146 + 0.352i)6-s + (−0.923 − 0.382i)7-s + (−0.707 + 0.707i)8-s + (0.437 − 0.437i)9-s + (−0.923 − 0.382i)10-s + (−0.352 + 0.146i)12-s + (0.236 + 0.570i)14-s + (−0.707 − 0.707i)15-s − 0.381·18-s + (−0.382 − 0.923i)20-s + 0.618i·21-s + ⋯ |
L(s) = 1 | + (−0.437 − 0.437i)2-s + (−0.236 − 0.570i)3-s − 0.618i·4-s + (1.49 − 0.619i)5-s + (−0.146 + 0.352i)6-s + (−0.923 − 0.382i)7-s + (−0.707 + 0.707i)8-s + (0.437 − 0.437i)9-s + (−0.923 − 0.382i)10-s + (−0.352 + 0.146i)12-s + (0.236 + 0.570i)14-s + (−0.707 − 0.707i)15-s − 0.381·18-s + (−0.382 − 0.923i)20-s + 0.618i·21-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2023 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.950 + 0.311i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2023 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.950 + 0.311i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9368568069\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9368568069\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 + (0.923 + 0.382i)T \) |
| 17 | \( 1 \) |
good | 2 | \( 1 + (0.437 + 0.437i)T + iT^{2} \) |
| 3 | \( 1 + (0.236 + 0.570i)T + (-0.707 + 0.707i)T^{2} \) |
| 5 | \( 1 + (-1.49 + 0.619i)T + (0.707 - 0.707i)T^{2} \) |
| 11 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 13 | \( 1 + T^{2} \) |
| 19 | \( 1 - iT^{2} \) |
| 23 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 29 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 31 | \( 1 + (0.619 + 1.49i)T + (-0.707 + 0.707i)T^{2} \) |
| 37 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 41 | \( 1 + (0.570 + 0.236i)T + (0.707 + 0.707i)T^{2} \) |
| 43 | \( 1 + (0.437 - 0.437i)T - iT^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 + (-1.14 - 1.14i)T + iT^{2} \) |
| 59 | \( 1 + iT^{2} \) |
| 61 | \( 1 + (-0.570 - 0.236i)T + (0.707 + 0.707i)T^{2} \) |
| 67 | \( 1 - 1.61T + T^{2} \) |
| 71 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 73 | \( 1 + (0.570 - 0.236i)T + (0.707 - 0.707i)T^{2} \) |
| 79 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 83 | \( 1 - iT^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + (1.49 - 0.619i)T + (0.707 - 0.707i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.365964947210945540200797353026, −8.512044090782674629254088016791, −7.24493621044750348236391985809, −6.44275776537239965027472491940, −5.92684060737718548042745114695, −5.26532890421958706937709699462, −4.01916140553604377471644409184, −2.59702849389113293524884137330, −1.72145998117484053334014185998, −0.800771422075051687011462749243,
1.98305549532134175995055491109, 2.97574086428205995235584109483, 3.79251688470803308202502084718, 5.13345096390783903030912104986, 5.79811486257139269851495435738, 6.79548138695926048248609511386, 6.98003284499355560486203339997, 8.271738724102125015753786728225, 9.056487888666011982088768006398, 9.707115295227921203668870762597