L(s) = 1 | + (−0.437 − 0.437i)2-s + (0.236 + 0.570i)3-s − 0.618i·4-s + (−1.49 + 0.619i)5-s + (0.146 − 0.352i)6-s + (0.923 + 0.382i)7-s + (−0.707 + 0.707i)8-s + (0.437 − 0.437i)9-s + (0.923 + 0.382i)10-s + (0.352 − 0.146i)12-s + (−0.236 − 0.570i)14-s + (−0.707 − 0.707i)15-s − 0.381·18-s + (0.382 + 0.923i)20-s + 0.618i·21-s + ⋯ |
L(s) = 1 | + (−0.437 − 0.437i)2-s + (0.236 + 0.570i)3-s − 0.618i·4-s + (−1.49 + 0.619i)5-s + (0.146 − 0.352i)6-s + (0.923 + 0.382i)7-s + (−0.707 + 0.707i)8-s + (0.437 − 0.437i)9-s + (0.923 + 0.382i)10-s + (0.352 − 0.146i)12-s + (−0.236 − 0.570i)14-s + (−0.707 − 0.707i)15-s − 0.381·18-s + (0.382 + 0.923i)20-s + 0.618i·21-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2023 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.950 - 0.311i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2023 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.950 - 0.311i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8259175837\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8259175837\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 + (-0.923 - 0.382i)T \) |
| 17 | \( 1 \) |
good | 2 | \( 1 + (0.437 + 0.437i)T + iT^{2} \) |
| 3 | \( 1 + (-0.236 - 0.570i)T + (-0.707 + 0.707i)T^{2} \) |
| 5 | \( 1 + (1.49 - 0.619i)T + (0.707 - 0.707i)T^{2} \) |
| 11 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 13 | \( 1 + T^{2} \) |
| 19 | \( 1 - iT^{2} \) |
| 23 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 29 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 31 | \( 1 + (-0.619 - 1.49i)T + (-0.707 + 0.707i)T^{2} \) |
| 37 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 41 | \( 1 + (-0.570 - 0.236i)T + (0.707 + 0.707i)T^{2} \) |
| 43 | \( 1 + (0.437 - 0.437i)T - iT^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 + (-1.14 - 1.14i)T + iT^{2} \) |
| 59 | \( 1 + iT^{2} \) |
| 61 | \( 1 + (0.570 + 0.236i)T + (0.707 + 0.707i)T^{2} \) |
| 67 | \( 1 - 1.61T + T^{2} \) |
| 71 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 73 | \( 1 + (-0.570 + 0.236i)T + (0.707 - 0.707i)T^{2} \) |
| 79 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 83 | \( 1 - iT^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + (-1.49 + 0.619i)T + (0.707 - 0.707i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.350741068509733677747301053118, −8.675989318226453010338196332581, −8.041081859211688893804500075769, −7.16231364614273555468177285524, −6.31701324152018667672951226971, −5.10650259313737586812846530985, −4.43714291568449228556205969692, −3.51629721633322234646669468829, −2.59137833247943213900667605170, −1.17910494228068140929252706881,
0.831915155248698490713602220409, 2.32277927707639525577182185017, 3.72398288209685182916469030049, 4.26538165819303317841958508418, 5.12486364273654354664976710976, 6.57184978729560957273647397431, 7.40211533069929385333677859701, 7.74648712085451067699562840783, 8.274769971687245485252451545800, 8.804161507820179125347660383371