Properties

Label 2-2023-1.1-c3-0-330
Degree $2$
Conductor $2023$
Sign $1$
Analytic cond. $119.360$
Root an. cond. $10.9252$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.61·2-s + 10.0·3-s + 5.03·4-s + 15.3·5-s + 36.3·6-s − 7·7-s − 10.7·8-s + 74.5·9-s + 55.2·10-s + 5.17·11-s + 50.7·12-s + 32.5·13-s − 25.2·14-s + 154.·15-s − 78.9·16-s + 269.·18-s − 98.4·19-s + 77.1·20-s − 70.5·21-s + 18.6·22-s + 185.·23-s − 107.·24-s + 109.·25-s + 117.·26-s + 479.·27-s − 35.2·28-s + 43.6·29-s + ⋯
L(s)  = 1  + 1.27·2-s + 1.93·3-s + 0.629·4-s + 1.36·5-s + 2.47·6-s − 0.377·7-s − 0.472·8-s + 2.76·9-s + 1.74·10-s + 0.141·11-s + 1.22·12-s + 0.694·13-s − 0.482·14-s + 2.65·15-s − 1.23·16-s + 3.52·18-s − 1.18·19-s + 0.862·20-s − 0.733·21-s + 0.180·22-s + 1.68·23-s − 0.917·24-s + 0.875·25-s + 0.886·26-s + 3.41·27-s − 0.237·28-s + 0.279·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2023 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2023 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2023\)    =    \(7 \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(119.360\)
Root analytic conductor: \(10.9252\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2023,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(11.96459977\)
\(L(\frac12)\) \(\approx\) \(11.96459977\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 + 7T \)
17 \( 1 \)
good2 \( 1 - 3.61T + 8T^{2} \)
3 \( 1 - 10.0T + 27T^{2} \)
5 \( 1 - 15.3T + 125T^{2} \)
11 \( 1 - 5.17T + 1.33e3T^{2} \)
13 \( 1 - 32.5T + 2.19e3T^{2} \)
19 \( 1 + 98.4T + 6.85e3T^{2} \)
23 \( 1 - 185.T + 1.21e4T^{2} \)
29 \( 1 - 43.6T + 2.43e4T^{2} \)
31 \( 1 - 80.1T + 2.97e4T^{2} \)
37 \( 1 + 297.T + 5.06e4T^{2} \)
41 \( 1 - 429.T + 6.89e4T^{2} \)
43 \( 1 + 311.T + 7.95e4T^{2} \)
47 \( 1 + 261.T + 1.03e5T^{2} \)
53 \( 1 - 346.T + 1.48e5T^{2} \)
59 \( 1 + 151.T + 2.05e5T^{2} \)
61 \( 1 - 451.T + 2.26e5T^{2} \)
67 \( 1 + 628.T + 3.00e5T^{2} \)
71 \( 1 + 110.T + 3.57e5T^{2} \)
73 \( 1 - 899.T + 3.89e5T^{2} \)
79 \( 1 + 68.7T + 4.93e5T^{2} \)
83 \( 1 + 1.41e3T + 5.71e5T^{2} \)
89 \( 1 - 1.39e3T + 7.04e5T^{2} \)
97 \( 1 + 625.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.927509433943140401159685085599, −8.230090156328174213793024355886, −6.88188395360541619229479045462, −6.52328092138877645225450155060, −5.45114797598591437341597401191, −4.52010025839443047432985688889, −3.72067981956377904021691695495, −2.93800285011168652796558664516, −2.34379084186886096243054094215, −1.37849847007733955729076470146, 1.37849847007733955729076470146, 2.34379084186886096243054094215, 2.93800285011168652796558664516, 3.72067981956377904021691695495, 4.52010025839443047432985688889, 5.45114797598591437341597401191, 6.52328092138877645225450155060, 6.88188395360541619229479045462, 8.230090156328174213793024355886, 8.927509433943140401159685085599

Graph of the $Z$-function along the critical line