L(s) = 1 | + (0.866 + 0.5i)3-s + (0.866 + 0.5i)7-s + (0.499 + 0.866i)9-s + (−0.5 + 0.866i)13-s + (0.5 + 0.866i)17-s + (−0.866 − 0.5i)19-s + (0.499 + 0.866i)21-s + (−1.73 + i)23-s + (0.5 − 0.866i)25-s + 0.999i·27-s + (−0.5 − 0.866i)29-s − i·31-s + (0.5 − 0.866i)37-s + (−0.866 + 0.499i)39-s + (0.5 − 0.866i)41-s + ⋯ |
L(s) = 1 | + (0.866 + 0.5i)3-s + (0.866 + 0.5i)7-s + (0.499 + 0.866i)9-s + (−0.5 + 0.866i)13-s + (0.5 + 0.866i)17-s + (−0.866 − 0.5i)19-s + (0.499 + 0.866i)21-s + (−1.73 + i)23-s + (0.5 − 0.866i)25-s + 0.999i·27-s + (−0.5 − 0.866i)29-s − i·31-s + (0.5 − 0.866i)37-s + (−0.866 + 0.499i)39-s + (0.5 − 0.866i)41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2016 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.520 - 0.853i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2016 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.520 - 0.853i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.644764116\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.644764116\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.866 - 0.5i)T \) |
| 7 | \( 1 + (-0.866 - 0.5i)T \) |
good | 5 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (1.73 - i)T + (0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + iT - T^{2} \) |
| 37 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 - iT - T^{2} \) |
| 53 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 59 | \( 1 + iT - T^{2} \) |
| 61 | \( 1 - T + T^{2} \) |
| 67 | \( 1 - iT - T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + iT - T^{2} \) |
| 83 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.434660322986583375402480473757, −8.664189380374373608973294514691, −7.996340901360237788504101570999, −7.46516678112148866545569711897, −6.21479776660880744238447783882, −5.40775532470821949967799243742, −4.27088330587698693734407519958, −3.97418173718215582855768224897, −2.39903397860615386404388525549, −1.94791006495430479341127322606,
1.18272266625324960999058156770, 2.29165466064677525566454066428, 3.24666672671110643123638858651, 4.23525311016364615547633648254, 5.09435900690020940393654880118, 6.17349071297863209104639211345, 7.11220348976688838508196586923, 7.77717287355886891133890095812, 8.252083480123772611975164274657, 9.056951365201290765929043383380