Properties

Label 2-2016-1.1-c1-0-8
Degree $2$
Conductor $2016$
Sign $1$
Analytic cond. $16.0978$
Root an. cond. $4.01221$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s − 7-s + 4·11-s − 6·13-s + 2·17-s + 4·19-s + 4·23-s − 25-s + 2·29-s + 8·31-s − 2·35-s − 10·37-s + 2·41-s + 8·43-s + 49-s + 10·53-s + 8·55-s + 12·59-s + 10·61-s − 12·65-s − 8·67-s − 12·71-s + 2·73-s − 4·77-s − 12·83-s + 4·85-s − 6·89-s + ⋯
L(s)  = 1  + 0.894·5-s − 0.377·7-s + 1.20·11-s − 1.66·13-s + 0.485·17-s + 0.917·19-s + 0.834·23-s − 1/5·25-s + 0.371·29-s + 1.43·31-s − 0.338·35-s − 1.64·37-s + 0.312·41-s + 1.21·43-s + 1/7·49-s + 1.37·53-s + 1.07·55-s + 1.56·59-s + 1.28·61-s − 1.48·65-s − 0.977·67-s − 1.42·71-s + 0.234·73-s − 0.455·77-s − 1.31·83-s + 0.433·85-s − 0.635·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2016 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2016 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2016\)    =    \(2^{5} \cdot 3^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(16.0978\)
Root analytic conductor: \(4.01221\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: $\chi_{2016} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2016,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.104995695\)
\(L(\frac12)\) \(\approx\) \(2.104995695\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + T \)
good5 \( 1 - 2 T + p T^{2} \)
11 \( 1 - 4 T + p T^{2} \)
13 \( 1 + 6 T + p T^{2} \)
17 \( 1 - 2 T + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
23 \( 1 - 4 T + p T^{2} \)
29 \( 1 - 2 T + p T^{2} \)
31 \( 1 - 8 T + p T^{2} \)
37 \( 1 + 10 T + p T^{2} \)
41 \( 1 - 2 T + p T^{2} \)
43 \( 1 - 8 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 - 10 T + p T^{2} \)
59 \( 1 - 12 T + p T^{2} \)
61 \( 1 - 10 T + p T^{2} \)
67 \( 1 + 8 T + p T^{2} \)
71 \( 1 + 12 T + p T^{2} \)
73 \( 1 - 2 T + p T^{2} \)
79 \( 1 + p T^{2} \)
83 \( 1 + 12 T + p T^{2} \)
89 \( 1 + 6 T + p T^{2} \)
97 \( 1 - 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.276149759039562405881600265119, −8.563921876686754159658697560444, −7.31018335896333255193865165033, −6.92498300719226377769276290185, −5.91606973141827528337712862398, −5.24579817240126278934142357225, −4.29692546645143492002561217000, −3.15121279396506951125762796736, −2.25773381760433102036905914294, −1.01010488872851060762389129931, 1.01010488872851060762389129931, 2.25773381760433102036905914294, 3.15121279396506951125762796736, 4.29692546645143492002561217000, 5.24579817240126278934142357225, 5.91606973141827528337712862398, 6.92498300719226377769276290185, 7.31018335896333255193865165033, 8.563921876686754159658697560444, 9.276149759039562405881600265119

Graph of the $Z$-function along the critical line