Properties

Label 2-201-1.1-c3-0-29
Degree $2$
Conductor $201$
Sign $-1$
Analytic cond. $11.8593$
Root an. cond. $3.44374$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.04·2-s + 3·3-s − 6.91·4-s − 6.71·5-s + 3.13·6-s + 8.77·7-s − 15.5·8-s + 9·9-s − 7.00·10-s + 17.1·11-s − 20.7·12-s − 57.2·13-s + 9.15·14-s − 20.1·15-s + 39.0·16-s − 103.·17-s + 9.39·18-s − 147.·19-s + 46.4·20-s + 26.3·21-s + 17.9·22-s − 114.·23-s − 46.6·24-s − 79.9·25-s − 59.7·26-s + 27·27-s − 60.6·28-s + ⋯
L(s)  = 1  + 0.368·2-s + 0.577·3-s − 0.863·4-s − 0.600·5-s + 0.212·6-s + 0.473·7-s − 0.687·8-s + 0.333·9-s − 0.221·10-s + 0.471·11-s − 0.498·12-s − 1.22·13-s + 0.174·14-s − 0.346·15-s + 0.610·16-s − 1.47·17-s + 0.122·18-s − 1.78·19-s + 0.518·20-s + 0.273·21-s + 0.173·22-s − 1.03·23-s − 0.396·24-s − 0.639·25-s − 0.450·26-s + 0.192·27-s − 0.409·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 201 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 201 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(201\)    =    \(3 \cdot 67\)
Sign: $-1$
Analytic conductor: \(11.8593\)
Root analytic conductor: \(3.44374\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 201,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 3T \)
67 \( 1 + 67T \)
good2 \( 1 - 1.04T + 8T^{2} \)
5 \( 1 + 6.71T + 125T^{2} \)
7 \( 1 - 8.77T + 343T^{2} \)
11 \( 1 - 17.1T + 1.33e3T^{2} \)
13 \( 1 + 57.2T + 2.19e3T^{2} \)
17 \( 1 + 103.T + 4.91e3T^{2} \)
19 \( 1 + 147.T + 6.85e3T^{2} \)
23 \( 1 + 114.T + 1.21e4T^{2} \)
29 \( 1 + 24.2T + 2.43e4T^{2} \)
31 \( 1 - 161.T + 2.97e4T^{2} \)
37 \( 1 - 97.6T + 5.06e4T^{2} \)
41 \( 1 - 13.1T + 6.89e4T^{2} \)
43 \( 1 - 333.T + 7.95e4T^{2} \)
47 \( 1 - 582.T + 1.03e5T^{2} \)
53 \( 1 + 231.T + 1.48e5T^{2} \)
59 \( 1 - 311.T + 2.05e5T^{2} \)
61 \( 1 + 520.T + 2.26e5T^{2} \)
71 \( 1 - 62.1T + 3.57e5T^{2} \)
73 \( 1 + 894.T + 3.89e5T^{2} \)
79 \( 1 + 1.03e3T + 4.93e5T^{2} \)
83 \( 1 - 801.T + 5.71e5T^{2} \)
89 \( 1 - 1.52e3T + 7.04e5T^{2} \)
97 \( 1 + 320.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.75868045075874394781955491975, −10.47352499035644908864176483544, −9.322401630325069169014084189015, −8.528253479861613863059367735660, −7.63076212982687791881688457860, −6.21897198183352610820356630677, −4.54311359391929379066814004795, −4.10903919175663666728746486171, −2.33958587247743485164368162051, 0, 2.33958587247743485164368162051, 4.10903919175663666728746486171, 4.54311359391929379066814004795, 6.21897198183352610820356630677, 7.63076212982687791881688457860, 8.528253479861613863059367735660, 9.322401630325069169014084189015, 10.47352499035644908864176483544, 11.75868045075874394781955491975

Graph of the $Z$-function along the critical line