Properties

Label 2-201-1.1-c3-0-26
Degree $2$
Conductor $201$
Sign $-1$
Analytic cond. $11.8593$
Root an. cond. $3.44374$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5.17·2-s + 3·3-s + 18.8·4-s + 17.1·5-s − 15.5·6-s − 19.8·7-s − 56.0·8-s + 9·9-s − 88.5·10-s − 47.5·11-s + 56.4·12-s − 63.9·13-s + 103.·14-s + 51.3·15-s + 139.·16-s + 10.7·17-s − 46.6·18-s − 133.·19-s + 321.·20-s − 59.6·21-s + 246.·22-s + 122.·23-s − 168.·24-s + 167.·25-s + 331.·26-s + 27·27-s − 374.·28-s + ⋯
L(s)  = 1  − 1.83·2-s + 0.577·3-s + 2.35·4-s + 1.52·5-s − 1.05·6-s − 1.07·7-s − 2.47·8-s + 0.333·9-s − 2.80·10-s − 1.30·11-s + 1.35·12-s − 1.36·13-s + 1.96·14-s + 0.883·15-s + 2.18·16-s + 0.153·17-s − 0.610·18-s − 1.61·19-s + 3.59·20-s − 0.620·21-s + 2.38·22-s + 1.11·23-s − 1.42·24-s + 1.33·25-s + 2.49·26-s + 0.192·27-s − 2.52·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 201 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 201 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(201\)    =    \(3 \cdot 67\)
Sign: $-1$
Analytic conductor: \(11.8593\)
Root analytic conductor: \(3.44374\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 201,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 3T \)
67 \( 1 + 67T \)
good2 \( 1 + 5.17T + 8T^{2} \)
5 \( 1 - 17.1T + 125T^{2} \)
7 \( 1 + 19.8T + 343T^{2} \)
11 \( 1 + 47.5T + 1.33e3T^{2} \)
13 \( 1 + 63.9T + 2.19e3T^{2} \)
17 \( 1 - 10.7T + 4.91e3T^{2} \)
19 \( 1 + 133.T + 6.85e3T^{2} \)
23 \( 1 - 122.T + 1.21e4T^{2} \)
29 \( 1 + 161.T + 2.43e4T^{2} \)
31 \( 1 + 228.T + 2.97e4T^{2} \)
37 \( 1 + 273.T + 5.06e4T^{2} \)
41 \( 1 - 156.T + 6.89e4T^{2} \)
43 \( 1 - 414.T + 7.95e4T^{2} \)
47 \( 1 + 215.T + 1.03e5T^{2} \)
53 \( 1 - 674.T + 1.48e5T^{2} \)
59 \( 1 + 577.T + 2.05e5T^{2} \)
61 \( 1 - 245.T + 2.26e5T^{2} \)
71 \( 1 + 325.T + 3.57e5T^{2} \)
73 \( 1 - 285.T + 3.89e5T^{2} \)
79 \( 1 + 298.T + 4.93e5T^{2} \)
83 \( 1 - 92.1T + 5.71e5T^{2} \)
89 \( 1 + 871.T + 7.04e5T^{2} \)
97 \( 1 - 1.30e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.73241792533453951022473987100, −10.23657302592555172563896128793, −9.426631815200028978984769700977, −8.917762391333367813245020228361, −7.56886969589852243784907360169, −6.75281102455023465571879884762, −5.54996425670707457018266274619, −2.74196089265084317987924167886, −2.02918787600409761608063260615, 0, 2.02918787600409761608063260615, 2.74196089265084317987924167886, 5.54996425670707457018266274619, 6.75281102455023465571879884762, 7.56886969589852243784907360169, 8.917762391333367813245020228361, 9.426631815200028978984769700977, 10.23657302592555172563896128793, 10.73241792533453951022473987100

Graph of the $Z$-function along the critical line