Properties

Label 2-201-1.1-c3-0-12
Degree $2$
Conductor $201$
Sign $-1$
Analytic cond. $11.8593$
Root an. cond. $3.44374$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s − 3·3-s + 8·4-s − 19·5-s + 12·6-s + 13·7-s + 9·9-s + 76·10-s + 26·11-s − 24·12-s + 26·13-s − 52·14-s + 57·15-s − 64·16-s − 96·17-s − 36·18-s + 124·19-s − 152·20-s − 39·21-s − 104·22-s + 153·23-s + 236·25-s − 104·26-s − 27·27-s + 104·28-s − 188·29-s − 228·30-s + ⋯
L(s)  = 1  − 1.41·2-s − 0.577·3-s + 4-s − 1.69·5-s + 0.816·6-s + 0.701·7-s + 1/3·9-s + 2.40·10-s + 0.712·11-s − 0.577·12-s + 0.554·13-s − 0.992·14-s + 0.981·15-s − 16-s − 1.36·17-s − 0.471·18-s + 1.49·19-s − 1.69·20-s − 0.405·21-s − 1.00·22-s + 1.38·23-s + 1.88·25-s − 0.784·26-s − 0.192·27-s + 0.701·28-s − 1.20·29-s − 1.38·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 201 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 201 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(201\)    =    \(3 \cdot 67\)
Sign: $-1$
Analytic conductor: \(11.8593\)
Root analytic conductor: \(3.44374\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 201,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + p T \)
67 \( 1 - p T \)
good2 \( 1 + p^{2} T + p^{3} T^{2} \)
5 \( 1 + 19 T + p^{3} T^{2} \)
7 \( 1 - 13 T + p^{3} T^{2} \)
11 \( 1 - 26 T + p^{3} T^{2} \)
13 \( 1 - 2 p T + p^{3} T^{2} \)
17 \( 1 + 96 T + p^{3} T^{2} \)
19 \( 1 - 124 T + p^{3} T^{2} \)
23 \( 1 - 153 T + p^{3} T^{2} \)
29 \( 1 + 188 T + p^{3} T^{2} \)
31 \( 1 + 229 T + p^{3} T^{2} \)
37 \( 1 + 271 T + p^{3} T^{2} \)
41 \( 1 + 225 T + p^{3} T^{2} \)
43 \( 1 - 121 T + p^{3} T^{2} \)
47 \( 1 - 272 T + p^{3} T^{2} \)
53 \( 1 + 503 T + p^{3} T^{2} \)
59 \( 1 - 351 T + p^{3} T^{2} \)
61 \( 1 - 436 T + p^{3} T^{2} \)
71 \( 1 + 792 T + p^{3} T^{2} \)
73 \( 1 + 97 T + p^{3} T^{2} \)
79 \( 1 + 848 T + p^{3} T^{2} \)
83 \( 1 - 865 T + p^{3} T^{2} \)
89 \( 1 - 430 T + p^{3} T^{2} \)
97 \( 1 + 270 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.23536036970716371472743820944, −10.84929805824472563623823540387, −9.247186572154156270258359782711, −8.578790688995497757214752577295, −7.49263552764073776947870901022, −6.95334184973773885423921632098, −4.97342291043207213510307543143, −3.76578155995946748015716714209, −1.32517005745348341396534753003, 0, 1.32517005745348341396534753003, 3.76578155995946748015716714209, 4.97342291043207213510307543143, 6.95334184973773885423921632098, 7.49263552764073776947870901022, 8.578790688995497757214752577295, 9.247186572154156270258359782711, 10.84929805824472563623823540387, 11.23536036970716371472743820944

Graph of the $Z$-function along the critical line