L(s) = 1 | + (0.309 − 0.951i)9-s + (0.363 − 1.11i)13-s + (−1.53 − 1.11i)17-s + (0.5 − 0.363i)29-s + (−0.587 + 1.80i)37-s + (0.5 − 1.53i)41-s + 49-s + (0.951 − 0.690i)53-s + (0.5 + 1.53i)61-s + (−0.363 − 1.11i)73-s + (−0.809 − 0.587i)81-s + (−0.190 − 0.587i)89-s + (1.53 − 1.11i)97-s + 0.618·101-s + (−0.5 + 1.53i)109-s + ⋯ |
L(s) = 1 | + (0.309 − 0.951i)9-s + (0.363 − 1.11i)13-s + (−1.53 − 1.11i)17-s + (0.5 − 0.363i)29-s + (−0.587 + 1.80i)37-s + (0.5 − 1.53i)41-s + 49-s + (0.951 − 0.690i)53-s + (0.5 + 1.53i)61-s + (−0.363 − 1.11i)73-s + (−0.809 − 0.587i)81-s + (−0.190 − 0.587i)89-s + (1.53 − 1.11i)97-s + 0.618·101-s + (−0.5 + 1.53i)109-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2000 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.436 + 0.899i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2000 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.436 + 0.899i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.086215642\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.086215642\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 7 | \( 1 - T^{2} \) |
| 11 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 13 | \( 1 + (-0.363 + 1.11i)T + (-0.809 - 0.587i)T^{2} \) |
| 17 | \( 1 + (1.53 + 1.11i)T + (0.309 + 0.951i)T^{2} \) |
| 19 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 23 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 29 | \( 1 + (-0.5 + 0.363i)T + (0.309 - 0.951i)T^{2} \) |
| 31 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 37 | \( 1 + (0.587 - 1.80i)T + (-0.809 - 0.587i)T^{2} \) |
| 41 | \( 1 + (-0.5 + 1.53i)T + (-0.809 - 0.587i)T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 53 | \( 1 + (-0.951 + 0.690i)T + (0.309 - 0.951i)T^{2} \) |
| 59 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 61 | \( 1 + (-0.5 - 1.53i)T + (-0.809 + 0.587i)T^{2} \) |
| 67 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 71 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 73 | \( 1 + (0.363 + 1.11i)T + (-0.809 + 0.587i)T^{2} \) |
| 79 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 83 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 89 | \( 1 + (0.190 + 0.587i)T + (-0.809 + 0.587i)T^{2} \) |
| 97 | \( 1 + (-1.53 + 1.11i)T + (0.309 - 0.951i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.004209003874069098536408603206, −8.681398665832836469937463528123, −7.55190338204729667326111905654, −6.85080936306539922147960865515, −6.12756438116113749599969790132, −5.17705624859594849853173689381, −4.27969664115939535252226707620, −3.34210958477396673885473725894, −2.37992379491733733596521599836, −0.808859571408472468738623792432,
1.66763592369434827954065441367, 2.46649607334182755180961385837, 3.95518872968926413251546852312, 4.45815324493041205095729247034, 5.48969477315592734869660293153, 6.45110485203384475387660098625, 7.05387499853231613527269222559, 8.005706029283537377826614795992, 8.731773781133624939330344205129, 9.340349255207800543029228636843