Properties

Label 2-200-200.109-c1-0-23
Degree $2$
Conductor $200$
Sign $-0.934 + 0.354i$
Analytic cond. $1.59700$
Root an. cond. $1.26372$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.41 + 0.0951i)2-s + (−0.615 − 1.89i)3-s + (1.98 − 0.268i)4-s + (−0.987 − 2.00i)5-s + (1.04 + 2.61i)6-s − 1.38i·7-s + (−2.77 + 0.567i)8-s + (−0.783 + 0.568i)9-s + (1.58 + 2.73i)10-s + (−3.04 + 4.18i)11-s + (−1.72 − 3.58i)12-s + (2.49 − 1.81i)13-s + (0.131 + 1.94i)14-s + (−3.19 + 3.10i)15-s + (3.85 − 1.06i)16-s + (−3.63 − 1.17i)17-s + ⋯
L(s)  = 1  + (−0.997 + 0.0672i)2-s + (−0.355 − 1.09i)3-s + (0.990 − 0.134i)4-s + (−0.441 − 0.897i)5-s + (0.428 + 1.06i)6-s − 0.521i·7-s + (−0.979 + 0.200i)8-s + (−0.261 + 0.189i)9-s + (0.500 + 0.865i)10-s + (−0.917 + 1.26i)11-s + (−0.498 − 1.03i)12-s + (0.692 − 0.503i)13-s + (0.0351 + 0.520i)14-s + (−0.824 + 0.801i)15-s + (0.963 − 0.265i)16-s + (−0.880 − 0.286i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.934 + 0.354i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.934 + 0.354i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(200\)    =    \(2^{3} \cdot 5^{2}\)
Sign: $-0.934 + 0.354i$
Analytic conductor: \(1.59700\)
Root analytic conductor: \(1.26372\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{200} (109, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 200,\ (\ :1/2),\ -0.934 + 0.354i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.0845743 - 0.461407i\)
\(L(\frac12)\) \(\approx\) \(0.0845743 - 0.461407i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1.41 - 0.0951i)T \)
5 \( 1 + (0.987 + 2.00i)T \)
good3 \( 1 + (0.615 + 1.89i)T + (-2.42 + 1.76i)T^{2} \)
7 \( 1 + 1.38iT - 7T^{2} \)
11 \( 1 + (3.04 - 4.18i)T + (-3.39 - 10.4i)T^{2} \)
13 \( 1 + (-2.49 + 1.81i)T + (4.01 - 12.3i)T^{2} \)
17 \( 1 + (3.63 + 1.17i)T + (13.7 + 9.99i)T^{2} \)
19 \( 1 + (6.09 + 1.97i)T + (15.3 + 11.1i)T^{2} \)
23 \( 1 + (0.168 - 0.232i)T + (-7.10 - 21.8i)T^{2} \)
29 \( 1 + (-8.75 + 2.84i)T + (23.4 - 17.0i)T^{2} \)
31 \( 1 + (-1.38 + 4.27i)T + (-25.0 - 18.2i)T^{2} \)
37 \( 1 + (4.07 - 2.96i)T + (11.4 - 35.1i)T^{2} \)
41 \( 1 + (-3.28 + 2.38i)T + (12.6 - 38.9i)T^{2} \)
43 \( 1 - 7.54T + 43T^{2} \)
47 \( 1 + (-0.954 + 0.310i)T + (38.0 - 27.6i)T^{2} \)
53 \( 1 + (1.02 + 3.15i)T + (-42.8 + 31.1i)T^{2} \)
59 \( 1 + (-1.05 - 1.44i)T + (-18.2 + 56.1i)T^{2} \)
61 \( 1 + (-1.30 + 1.80i)T + (-18.8 - 58.0i)T^{2} \)
67 \( 1 + (0.552 - 1.69i)T + (-54.2 - 39.3i)T^{2} \)
71 \( 1 + (4.68 + 14.4i)T + (-57.4 + 41.7i)T^{2} \)
73 \( 1 + (-6.88 + 9.46i)T + (-22.5 - 69.4i)T^{2} \)
79 \( 1 + (0.381 + 1.17i)T + (-63.9 + 46.4i)T^{2} \)
83 \( 1 + (-1.29 + 3.99i)T + (-67.1 - 48.7i)T^{2} \)
89 \( 1 + (9.13 + 6.63i)T + (27.5 + 84.6i)T^{2} \)
97 \( 1 + (4.65 - 1.51i)T + (78.4 - 57.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.12086048844011169591549376261, −11.01805465817382895033664493418, −10.08751410918501915107943833357, −8.799905812881292886187283640028, −7.905183346208876674056194323633, −7.15893049223922361634114907426, −6.15111993842000928854847772667, −4.52393850154239619390672709404, −2.13796329738566241573632540878, −0.56403961727030029652728028781, 2.66974058068507493105741347627, 4.01902816512589696258415839901, 5.79059138026337785555740669394, 6.73881210058043802555521636178, 8.247540507813705984435559392782, 8.861323383847795653005807846361, 10.28303425707104155076896056808, 10.77911108111962338740613026829, 11.28457116089312571222055765283, 12.53922034906677560459590002134

Graph of the $Z$-function along the critical line