L(s) = 1 | + (−14.9 + 5.65i)2-s + 25.1i·3-s + (191. − 169. i)4-s − 279.·5-s + (−142. − 376. i)6-s − 2.97e3i·7-s + (−1.91e3 + 3.62e3i)8-s + 5.92e3·9-s + (4.18e3 − 1.58e3i)10-s + 2.80e4i·11-s + (4.25e3 + 4.82e3i)12-s + 3.56e4·13-s + (1.68e4 + 4.45e4i)14-s − 7.02e3i·15-s + (8.16e3 − 6.50e4i)16-s + 5.93e4·17-s + ⋯ |
L(s) = 1 | + (−0.935 + 0.353i)2-s + 0.310i·3-s + (0.749 − 0.661i)4-s − 0.447·5-s + (−0.109 − 0.290i)6-s − 1.23i·7-s + (−0.467 + 0.884i)8-s + 0.903·9-s + (0.418 − 0.158i)10-s + 1.91i·11-s + (0.205 + 0.232i)12-s + 1.24·13-s + (0.438 + 1.15i)14-s − 0.138i·15-s + (0.124 − 0.992i)16-s + 0.710·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 20 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.749 - 0.661i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 20 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (0.749 - 0.661i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{9}{2})\) |
\(\approx\) |
\(1.04520 + 0.395186i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.04520 + 0.395186i\) |
\(L(5)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (14.9 - 5.65i)T \) |
| 5 | \( 1 + 279.T \) |
good | 3 | \( 1 - 25.1iT - 6.56e3T^{2} \) |
| 7 | \( 1 + 2.97e3iT - 5.76e6T^{2} \) |
| 11 | \( 1 - 2.80e4iT - 2.14e8T^{2} \) |
| 13 | \( 1 - 3.56e4T + 8.15e8T^{2} \) |
| 17 | \( 1 - 5.93e4T + 6.97e9T^{2} \) |
| 19 | \( 1 - 1.46e5iT - 1.69e10T^{2} \) |
| 23 | \( 1 + 3.09e5iT - 7.83e10T^{2} \) |
| 29 | \( 1 - 1.02e6T + 5.00e11T^{2} \) |
| 31 | \( 1 + 1.62e5iT - 8.52e11T^{2} \) |
| 37 | \( 1 - 8.64e5T + 3.51e12T^{2} \) |
| 41 | \( 1 - 1.51e6T + 7.98e12T^{2} \) |
| 43 | \( 1 + 2.39e6iT - 1.16e13T^{2} \) |
| 47 | \( 1 - 2.15e6iT - 2.38e13T^{2} \) |
| 53 | \( 1 + 9.78e6T + 6.22e13T^{2} \) |
| 59 | \( 1 + 7.13e6iT - 1.46e14T^{2} \) |
| 61 | \( 1 + 5.43e6T + 1.91e14T^{2} \) |
| 67 | \( 1 - 1.02e7iT - 4.06e14T^{2} \) |
| 71 | \( 1 - 3.55e7iT - 6.45e14T^{2} \) |
| 73 | \( 1 + 3.90e6T + 8.06e14T^{2} \) |
| 79 | \( 1 + 3.17e6iT - 1.51e15T^{2} \) |
| 83 | \( 1 - 4.52e7iT - 2.25e15T^{2} \) |
| 89 | \( 1 - 4.70e7T + 3.93e15T^{2} \) |
| 97 | \( 1 + 1.22e7T + 7.83e15T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−16.56267254693024473907957961936, −15.64371448146301616590756349020, −14.39585944880952084004979587671, −12.44772181611498159403411805519, −10.60957404340514994707054296839, −9.859372154273360286427776887838, −7.925327196024062147325147752034, −6.81432798255040991549460421299, −4.28348006125665235449125993286, −1.24842739707794167449920408138,
1.01668248152558800710877177979, 3.16383705402529749390716506159, 6.20915077216700571498840446476, 8.056798358649719222998068384705, 9.090593474457492659445240267851, 10.95038756131101088911212692757, 11.96059487726770277840100378225, 13.37217579097446640650199369000, 15.60901203794583898149424166990, 16.18110862334797127210625166431