Properties

Label 2-20-20.19-c40-0-93
Degree $2$
Conductor $20$
Sign $1$
Analytic cond. $202.684$
Root an. cond. $14.2367$
Motivic weight $40$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.04e6·2-s − 3.07e9·3-s + 1.09e12·4-s + 9.53e13·5-s − 3.22e15·6-s + 1.40e17·7-s + 1.15e18·8-s − 2.67e18·9-s + 1.00e20·10-s − 3.38e21·12-s + 1.47e23·14-s − 2.93e23·15-s + 1.20e24·16-s − 2.80e24·18-s + 1.04e26·20-s − 4.34e26·21-s + 3.20e27·23-s − 3.55e27·24-s + 9.09e27·25-s + 4.56e28·27-s + 1.54e29·28-s + 2.58e28·29-s − 3.07e29·30-s + 1.26e30·32-s + 1.34e31·35-s − 2.94e30·36-s + 1.09e32·40-s + ⋯
L(s)  = 1  + 2-s − 0.883·3-s + 4-s + 5-s − 0.883·6-s + 1.76·7-s + 8-s − 0.219·9-s + 10-s − 0.883·12-s + 1.76·14-s − 0.883·15-s + 16-s − 0.219·18-s + 20-s − 1.56·21-s + 1.86·23-s − 0.883·24-s + 25-s + 1.07·27-s + 1.76·28-s + 0.145·29-s − 0.883·30-s + 32-s + 1.76·35-s − 0.219·36-s + 40-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 20 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(41-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 20 ^{s/2} \, \Gamma_{\C}(s+20) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(20\)    =    \(2^{2} \cdot 5\)
Sign: $1$
Analytic conductor: \(202.684\)
Root analytic conductor: \(14.2367\)
Motivic weight: \(40\)
Rational: yes
Arithmetic: yes
Character: $\chi_{20} (19, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 20,\ (\ :20),\ 1)\)

Particular Values

\(L(\frac{41}{2})\) \(\approx\) \(6.124989066\)
\(L(\frac12)\) \(\approx\) \(6.124989066\)
\(L(21)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - p^{20} T \)
5 \( 1 - p^{20} T \)
good3 \( 1 + 3079559198 T + p^{40} T^{2} \)
7 \( 1 - 140945283647952002 T + p^{40} T^{2} \)
11 \( ( 1 - p^{20} T )( 1 + p^{20} T ) \)
13 \( ( 1 - p^{20} T )( 1 + p^{20} T ) \)
17 \( ( 1 - p^{20} T )( 1 + p^{20} T ) \)
19 \( ( 1 - p^{20} T )( 1 + p^{20} T ) \)
23 \( 1 - \)\(32\!\cdots\!02\)\( T + p^{40} T^{2} \)
29 \( 1 - \)\(25\!\cdots\!02\)\( T + p^{40} T^{2} \)
31 \( ( 1 - p^{20} T )( 1 + p^{20} T ) \)
37 \( ( 1 - p^{20} T )( 1 + p^{20} T ) \)
41 \( 1 + \)\(47\!\cdots\!98\)\( T + p^{40} T^{2} \)
43 \( 1 + \)\(88\!\cdots\!98\)\( T + p^{40} T^{2} \)
47 \( 1 - \)\(36\!\cdots\!02\)\( T + p^{40} T^{2} \)
53 \( ( 1 - p^{20} T )( 1 + p^{20} T ) \)
59 \( ( 1 - p^{20} T )( 1 + p^{20} T ) \)
61 \( 1 + \)\(90\!\cdots\!98\)\( T + p^{40} T^{2} \)
67 \( 1 + \)\(32\!\cdots\!98\)\( T + p^{40} T^{2} \)
71 \( ( 1 - p^{20} T )( 1 + p^{20} T ) \)
73 \( ( 1 - p^{20} T )( 1 + p^{20} T ) \)
79 \( ( 1 - p^{20} T )( 1 + p^{20} T ) \)
83 \( 1 + \)\(47\!\cdots\!98\)\( T + p^{40} T^{2} \)
89 \( 1 - \)\(18\!\cdots\!02\)\( T + p^{40} T^{2} \)
97 \( ( 1 - p^{20} T )( 1 + p^{20} T ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.18536404707102087249392800609, −10.51633553961312359808605426157, −8.660630018752931862545576616922, −7.22061812053256996678948263134, −6.06431764060825460682629797729, −5.15604294075701661295346733300, −4.71067717368089089569519505926, −2.92926050943879108892260731925, −1.78624962738186755109003512476, −1.00981357809695663977486863217, 1.00981357809695663977486863217, 1.78624962738186755109003512476, 2.92926050943879108892260731925, 4.71067717368089089569519505926, 5.15604294075701661295346733300, 6.06431764060825460682629797729, 7.22061812053256996678948263134, 8.660630018752931862545576616922, 10.51633553961312359808605426157, 11.18536404707102087249392800609

Graph of the $Z$-function along the critical line