Properties

Label 2-20-20.19-c38-0-51
Degree $2$
Conductor $20$
Sign $1$
Analytic cond. $182.926$
Root an. cond. $13.5250$
Motivic weight $38$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5.24e5·2-s − 2.23e9·3-s + 2.74e11·4-s − 1.90e13·5-s + 1.17e15·6-s − 1.59e16·7-s − 1.44e17·8-s + 3.66e18·9-s + 1.00e19·10-s − 6.15e20·12-s + 8.38e21·14-s + 4.27e22·15-s + 7.55e22·16-s − 1.91e24·18-s − 5.24e24·20-s + 3.58e25·21-s + 1.17e26·23-s + 3.22e26·24-s + 3.63e26·25-s − 5.17e27·27-s − 4.39e27·28-s + 1.09e28·29-s − 2.23e28·30-s − 3.96e28·32-s + 3.05e29·35-s + 1.00e30·36-s + 2.74e30·40-s + ⋯
L(s)  = 1  − 2-s − 1.92·3-s + 4-s − 5-s + 1.92·6-s − 1.40·7-s − 8-s + 2.71·9-s + 10-s − 1.92·12-s + 1.40·14-s + 1.92·15-s + 16-s − 2.71·18-s − 20-s + 2.70·21-s + 1.58·23-s + 1.92·24-s + 25-s − 3.29·27-s − 1.40·28-s + 1.79·29-s − 1.92·30-s − 32-s + 1.40·35-s + 2.71·36-s + 40-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 20 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(39-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 20 ^{s/2} \, \Gamma_{\C}(s+19) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(20\)    =    \(2^{2} \cdot 5\)
Sign: $1$
Analytic conductor: \(182.926\)
Root analytic conductor: \(13.5250\)
Motivic weight: \(38\)
Rational: yes
Arithmetic: yes
Character: $\chi_{20} (19, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 20,\ (\ :19),\ 1)\)

Particular Values

\(L(\frac{39}{2})\) \(\approx\) \(0.4750674870\)
\(L(\frac12)\) \(\approx\) \(0.4750674870\)
\(L(20)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + p^{19} T \)
5 \( 1 + p^{19} T \)
good3 \( 1 + 2238849644 T + p^{38} T^{2} \)
7 \( 1 + 15999194597449396 T + p^{38} T^{2} \)
11 \( ( 1 - p^{19} T )( 1 + p^{19} T ) \)
13 \( ( 1 - p^{19} T )( 1 + p^{19} T ) \)
17 \( ( 1 - p^{19} T )( 1 + p^{19} T ) \)
19 \( ( 1 - p^{19} T )( 1 + p^{19} T ) \)
23 \( 1 - \)\(11\!\cdots\!36\)\( T + p^{38} T^{2} \)
29 \( 1 - \)\(10\!\cdots\!58\)\( T + p^{38} T^{2} \)
31 \( ( 1 - p^{19} T )( 1 + p^{19} T ) \)
37 \( ( 1 - p^{19} T )( 1 + p^{19} T ) \)
41 \( 1 - \)\(48\!\cdots\!02\)\( T + p^{38} T^{2} \)
43 \( 1 - \)\(21\!\cdots\!76\)\( T + p^{38} T^{2} \)
47 \( 1 - \)\(85\!\cdots\!44\)\( T + p^{38} T^{2} \)
53 \( ( 1 - p^{19} T )( 1 + p^{19} T ) \)
59 \( ( 1 - p^{19} T )( 1 + p^{19} T ) \)
61 \( 1 - \)\(19\!\cdots\!02\)\( T + p^{38} T^{2} \)
67 \( 1 + \)\(85\!\cdots\!56\)\( T + p^{38} T^{2} \)
71 \( ( 1 - p^{19} T )( 1 + p^{19} T ) \)
73 \( ( 1 - p^{19} T )( 1 + p^{19} T ) \)
79 \( ( 1 - p^{19} T )( 1 + p^{19} T ) \)
83 \( 1 - \)\(22\!\cdots\!16\)\( T + p^{38} T^{2} \)
89 \( 1 + \)\(21\!\cdots\!02\)\( T + p^{38} T^{2} \)
97 \( ( 1 - p^{19} T )( 1 + p^{19} T ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.05536434605061346414815119838, −10.36524937350389810490315838184, −9.160207860280308845956665254366, −7.38492015751643034875292140984, −6.70215710349397183360496235558, −5.79725185654709699415497518699, −4.35059581003857761163682836556, −2.93522644410615910151038210355, −0.923971514538432392903714996426, −0.54158087382731914233903410190, 0.54158087382731914233903410190, 0.923971514538432392903714996426, 2.93522644410615910151038210355, 4.35059581003857761163682836556, 5.79725185654709699415497518699, 6.70215710349397183360496235558, 7.38492015751643034875292140984, 9.160207860280308845956665254366, 10.36524937350389810490315838184, 11.05536434605061346414815119838

Graph of the $Z$-function along the critical line