Properties

Label 2-20-20.19-c28-0-72
Degree $2$
Conductor $20$
Sign $1$
Analytic cond. $99.3369$
Root an. cond. $9.96679$
Motivic weight $28$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.63e4·2-s + 6.72e6·3-s + 2.68e8·4-s + 6.10e9·5-s + 1.10e11·6-s + 8.27e11·7-s + 4.39e12·8-s + 2.23e13·9-s + 1.00e14·10-s + 1.80e15·12-s + 1.35e16·14-s + 4.10e16·15-s + 7.20e16·16-s + 3.65e17·18-s + 1.63e18·20-s + 5.56e18·21-s − 1.24e19·23-s + 2.95e19·24-s + 3.72e19·25-s − 3.69e18·27-s + 2.22e20·28-s − 3.98e20·29-s + 6.72e20·30-s + 1.18e21·32-s + 5.04e21·35-s + 5.99e21·36-s + 2.68e22·40-s + ⋯
L(s)  = 1  + 2-s + 1.40·3-s + 4-s + 5-s + 1.40·6-s + 1.21·7-s + 8-s + 0.975·9-s + 10-s + 1.40·12-s + 1.21·14-s + 1.40·15-s + 16-s + 0.975·18-s + 20-s + 1.71·21-s − 1.07·23-s + 1.40·24-s + 25-s − 0.0337·27-s + 1.21·28-s − 1.34·29-s + 1.40·30-s + 32-s + 1.21·35-s + 0.975·36-s + 40-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 20 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(29-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 20 ^{s/2} \, \Gamma_{\C}(s+14) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(20\)    =    \(2^{2} \cdot 5\)
Sign: $1$
Analytic conductor: \(99.3369\)
Root analytic conductor: \(9.96679\)
Motivic weight: \(28\)
Rational: yes
Arithmetic: yes
Character: $\chi_{20} (19, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 20,\ (\ :14),\ 1)\)

Particular Values

\(L(\frac{29}{2})\) \(\approx\) \(10.50714490\)
\(L(\frac12)\) \(\approx\) \(10.50714490\)
\(L(15)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - p^{14} T \)
5 \( 1 - p^{14} T \)
good3 \( 1 - 6723358 T + p^{28} T^{2} \)
7 \( 1 - 827222074478 T + p^{28} T^{2} \)
11 \( ( 1 - p^{14} T )( 1 + p^{14} T ) \)
13 \( ( 1 - p^{14} T )( 1 + p^{14} T ) \)
17 \( ( 1 - p^{14} T )( 1 + p^{14} T ) \)
19 \( ( 1 - p^{14} T )( 1 + p^{14} T ) \)
23 \( 1 + 12490410244449170002 T + p^{28} T^{2} \)
29 \( 1 + \)\(39\!\cdots\!58\)\( T + p^{28} T^{2} \)
31 \( ( 1 - p^{14} T )( 1 + p^{14} T ) \)
37 \( ( 1 - p^{14} T )( 1 + p^{14} T ) \)
41 \( 1 + \)\(64\!\cdots\!98\)\( T + p^{28} T^{2} \)
43 \( 1 - \)\(12\!\cdots\!18\)\( T + p^{28} T^{2} \)
47 \( 1 + \)\(42\!\cdots\!42\)\( T + p^{28} T^{2} \)
53 \( ( 1 - p^{14} T )( 1 + p^{14} T ) \)
59 \( ( 1 - p^{14} T )( 1 + p^{14} T ) \)
61 \( 1 + \)\(15\!\cdots\!98\)\( T + p^{28} T^{2} \)
67 \( 1 - \)\(36\!\cdots\!58\)\( T + p^{28} T^{2} \)
71 \( ( 1 - p^{14} T )( 1 + p^{14} T ) \)
73 \( ( 1 - p^{14} T )( 1 + p^{14} T ) \)
79 \( ( 1 - p^{14} T )( 1 + p^{14} T ) \)
83 \( 1 + \)\(13\!\cdots\!62\)\( T + p^{28} T^{2} \)
89 \( 1 + \)\(36\!\cdots\!98\)\( T + p^{28} T^{2} \)
97 \( ( 1 - p^{14} T )( 1 + p^{14} T ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.86572219081296939187020212628, −11.30315120027015382455648541961, −9.907813866205140943398825586019, −8.494127224705859993652275396982, −7.42530368286348081567521498130, −5.84220748495519752354420429438, −4.61961196781501139967430864873, −3.33917847862162842559781673786, −2.12891709555559780628519583778, −1.62310464442896221557613274750, 1.62310464442896221557613274750, 2.12891709555559780628519583778, 3.33917847862162842559781673786, 4.61961196781501139967430864873, 5.84220748495519752354420429438, 7.42530368286348081567521498130, 8.494127224705859993652275396982, 9.907813866205140943398825586019, 11.30315120027015382455648541961, 12.86572219081296939187020212628

Graph of the $Z$-function along the critical line