Properties

Label 2-20-20.19-c26-0-41
Degree $2$
Conductor $20$
Sign $1$
Analytic cond. $85.6585$
Root an. cond. $9.25519$
Motivic weight $26$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8.19e3·2-s + 1.96e5·3-s + 6.71e7·4-s − 1.22e9·5-s + 1.61e9·6-s − 1.13e11·7-s + 5.49e11·8-s − 2.50e12·9-s − 1.00e13·10-s + 1.31e13·12-s − 9.29e14·14-s − 2.39e14·15-s + 4.50e15·16-s − 2.05e16·18-s − 8.19e16·20-s − 2.22e16·21-s + 7.67e17·23-s + 1.08e17·24-s + 1.49e18·25-s − 9.91e17·27-s − 7.61e18·28-s + 1.93e19·29-s − 1.96e18·30-s + 3.68e19·32-s + 1.38e20·35-s − 1.67e20·36-s − 6.71e20·40-s + ⋯
L(s)  = 1  + 2-s + 0.123·3-s + 4-s − 5-s + 0.123·6-s − 1.17·7-s + 8-s − 0.984·9-s − 10-s + 0.123·12-s − 1.17·14-s − 0.123·15-s + 16-s − 0.984·18-s − 20-s − 0.144·21-s + 1.52·23-s + 0.123·24-s + 25-s − 0.244·27-s − 1.17·28-s + 1.88·29-s − 0.123·30-s + 32-s + 1.17·35-s − 0.984·36-s − 40-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 20 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(27-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 20 ^{s/2} \, \Gamma_{\C}(s+13) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(20\)    =    \(2^{2} \cdot 5\)
Sign: $1$
Analytic conductor: \(85.6585\)
Root analytic conductor: \(9.25519\)
Motivic weight: \(26\)
Rational: yes
Arithmetic: yes
Character: $\chi_{20} (19, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 20,\ (\ :13),\ 1)\)

Particular Values

\(L(\frac{27}{2})\) \(\approx\) \(2.883230092\)
\(L(\frac12)\) \(\approx\) \(2.883230092\)
\(L(14)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - p^{13} T \)
5 \( 1 + p^{13} T \)
good3 \( 1 - 196556 T + p^{26} T^{2} \)
7 \( 1 + 113407192076 T + p^{26} T^{2} \)
11 \( ( 1 - p^{13} T )( 1 + p^{13} T ) \)
13 \( ( 1 - p^{13} T )( 1 + p^{13} T ) \)
17 \( ( 1 - p^{13} T )( 1 + p^{13} T ) \)
19 \( ( 1 - p^{13} T )( 1 + p^{13} T ) \)
23 \( 1 - 767155019694663556 T + p^{26} T^{2} \)
29 \( 1 - 19310164803613363658 T + p^{26} T^{2} \)
31 \( ( 1 - p^{13} T )( 1 + p^{13} T ) \)
37 \( ( 1 - p^{13} T )( 1 + p^{13} T ) \)
41 \( 1 + \)\(18\!\cdots\!38\)\( T + p^{26} T^{2} \)
43 \( 1 - \)\(34\!\cdots\!96\)\( T + p^{26} T^{2} \)
47 \( 1 - \)\(57\!\cdots\!44\)\( T + p^{26} T^{2} \)
53 \( ( 1 - p^{13} T )( 1 + p^{13} T ) \)
59 \( ( 1 - p^{13} T )( 1 + p^{13} T ) \)
61 \( 1 + \)\(50\!\cdots\!58\)\( T + p^{26} T^{2} \)
67 \( 1 + \)\(94\!\cdots\!76\)\( T + p^{26} T^{2} \)
71 \( ( 1 - p^{13} T )( 1 + p^{13} T ) \)
73 \( ( 1 - p^{13} T )( 1 + p^{13} T ) \)
79 \( ( 1 - p^{13} T )( 1 + p^{13} T ) \)
83 \( 1 + \)\(17\!\cdots\!84\)\( T + p^{26} T^{2} \)
89 \( 1 - \)\(23\!\cdots\!58\)\( T + p^{26} T^{2} \)
97 \( ( 1 - p^{13} T )( 1 + p^{13} T ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.66549942536772781440206254687, −11.74067586160998547596472729429, −10.55532799038991259664972302010, −8.736120931456746373496889850548, −7.27078758750976837871519238486, −6.18639787514492437323572207705, −4.76071837132538784652376469713, −3.40411104409083400643037773205, −2.76661905072831203458327612173, −0.70737818229352044163842818386, 0.70737818229352044163842818386, 2.76661905072831203458327612173, 3.40411104409083400643037773205, 4.76071837132538784652376469713, 6.18639787514492437323572207705, 7.27078758750976837871519238486, 8.736120931456746373496889850548, 10.55532799038991259664972302010, 11.74067586160998547596472729429, 12.66549942536772781440206254687

Graph of the $Z$-function along the critical line