Properties

Label 2-20-20.19-c22-0-50
Degree $2$
Conductor $20$
Sign $1$
Analytic cond. $61.3414$
Root an. cond. $7.83208$
Motivic weight $22$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.04e3·2-s + 3.49e5·3-s + 4.19e6·4-s − 4.88e7·5-s + 7.14e8·6-s + 1.80e8·7-s + 8.58e9·8-s + 9.04e10·9-s − 1.00e11·10-s + 1.46e12·12-s + 3.69e11·14-s − 1.70e13·15-s + 1.75e13·16-s + 1.85e14·18-s − 2.04e14·20-s + 6.30e13·21-s + 1.89e15·23-s + 2.99e15·24-s + 2.38e15·25-s + 2.06e16·27-s + 7.57e14·28-s − 2.21e16·29-s − 3.49e16·30-s + 3.60e16·32-s − 8.81e15·35-s + 3.79e17·36-s − 4.19e17·40-s + ⋯
L(s)  = 1  + 2-s + 1.97·3-s + 4-s − 5-s + 1.97·6-s + 0.0913·7-s + 8-s + 2.88·9-s − 10-s + 1.97·12-s + 0.0913·14-s − 1.97·15-s + 16-s + 2.88·18-s − 20-s + 0.179·21-s + 1.98·23-s + 1.97·24-s + 25-s + 3.70·27-s + 0.0913·28-s − 1.81·29-s − 1.97·30-s + 32-s − 0.0913·35-s + 2.88·36-s − 40-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 20 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(23-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 20 ^{s/2} \, \Gamma_{\C}(s+11) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(20\)    =    \(2^{2} \cdot 5\)
Sign: $1$
Analytic conductor: \(61.3414\)
Root analytic conductor: \(7.83208\)
Motivic weight: \(22\)
Rational: yes
Arithmetic: yes
Character: $\chi_{20} (19, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 20,\ (\ :11),\ 1)\)

Particular Values

\(L(\frac{23}{2})\) \(\approx\) \(8.126626341\)
\(L(\frac12)\) \(\approx\) \(8.126626341\)
\(L(12)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - p^{11} T \)
5 \( 1 + p^{11} T \)
good3 \( 1 - 349004 T + p^{22} T^{2} \)
7 \( 1 - 180570196 T + p^{22} T^{2} \)
11 \( ( 1 - p^{11} T )( 1 + p^{11} T ) \)
13 \( ( 1 - p^{11} T )( 1 + p^{11} T ) \)
17 \( ( 1 - p^{11} T )( 1 + p^{11} T ) \)
19 \( ( 1 - p^{11} T )( 1 + p^{11} T ) \)
23 \( 1 - 1893250316982244 T + p^{22} T^{2} \)
29 \( 1 + 22150816404486022 T + p^{22} T^{2} \)
31 \( ( 1 - p^{11} T )( 1 + p^{11} T ) \)
37 \( ( 1 - p^{11} T )( 1 + p^{11} T ) \)
41 \( 1 - 6435606414098462 T + p^{22} T^{2} \)
43 \( 1 - 1117494535796148124 T + p^{22} T^{2} \)
47 \( 1 + 2231392497520513004 T + p^{22} T^{2} \)
53 \( ( 1 - p^{11} T )( 1 + p^{11} T ) \)
59 \( ( 1 - p^{11} T )( 1 + p^{11} T ) \)
61 \( 1 + 64423241932531376458 T + p^{22} T^{2} \)
67 \( 1 + \)\(21\!\cdots\!84\)\( T + p^{22} T^{2} \)
71 \( ( 1 - p^{11} T )( 1 + p^{11} T ) \)
73 \( ( 1 - p^{11} T )( 1 + p^{11} T ) \)
79 \( ( 1 - p^{11} T )( 1 + p^{11} T ) \)
83 \( 1 - \)\(22\!\cdots\!24\)\( T + p^{22} T^{2} \)
89 \( 1 + \)\(37\!\cdots\!42\)\( T + p^{22} T^{2} \)
97 \( ( 1 - p^{11} T )( 1 + p^{11} T ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.44792285196138697044224511065, −12.58918960598669443557043774719, −10.93182677975026538335407602604, −9.171621425235265019206838478517, −7.86191734607557586596548467897, −7.07553887185090618178229002182, −4.65263447511501508080186909094, −3.59734597352903329298911772891, −2.80830003263743537990735040214, −1.43697881899650127389287036387, 1.43697881899650127389287036387, 2.80830003263743537990735040214, 3.59734597352903329298911772891, 4.65263447511501508080186909094, 7.07553887185090618178229002182, 7.86191734607557586596548467897, 9.171621425235265019206838478517, 10.93182677975026538335407602604, 12.58918960598669443557043774719, 13.44792285196138697044224511065

Graph of the $Z$-function along the critical line