Properties

Label 2-2-1.1-c37-0-0
Degree $2$
Conductor $2$
Sign $1$
Analytic cond. $17.3428$
Root an. cond. $4.16446$
Motivic weight $37$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.62e5·2-s − 1.15e9·3-s + 6.87e10·4-s − 3.59e11·5-s − 3.03e14·6-s − 6.58e15·7-s + 1.80e16·8-s + 8.92e17·9-s − 9.43e16·10-s + 6.37e18·11-s − 7.96e19·12-s + 5.56e20·13-s − 1.72e21·14-s + 4.16e20·15-s + 4.72e21·16-s + 9.53e22·17-s + 2.33e23·18-s − 3.47e23·19-s − 2.47e22·20-s + 7.62e24·21-s + 1.67e24·22-s + 1.10e25·23-s − 2.08e25·24-s − 7.26e25·25-s + 1.45e26·26-s − 5.12e26·27-s − 4.52e26·28-s + ⋯
L(s)  = 1  + 0.707·2-s − 1.72·3-s + 0.5·4-s − 0.0421·5-s − 1.22·6-s − 1.52·7-s + 0.353·8-s + 1.98·9-s − 0.0298·10-s + 0.345·11-s − 0.863·12-s + 1.37·13-s − 1.08·14-s + 0.0728·15-s + 0.250·16-s + 1.64·17-s + 1.40·18-s − 0.765·19-s − 0.0210·20-s + 2.63·21-s + 0.244·22-s + 0.711·23-s − 0.610·24-s − 0.998·25-s + 0.970·26-s − 1.69·27-s − 0.764·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(38-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2 ^{s/2} \, \Gamma_{\C}(s+37/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2\)
Sign: $1$
Analytic conductor: \(17.3428\)
Root analytic conductor: \(4.16446\)
Motivic weight: \(37\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2,\ (\ :37/2),\ 1)\)

Particular Values

\(L(19)\) \(\approx\) \(1.395186141\)
\(L(\frac12)\) \(\approx\) \(1.395186141\)
\(L(\frac{39}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 2.62e5T \)
good3 \( 1 + 1.15e9T + 4.50e17T^{2} \)
5 \( 1 + 3.59e11T + 7.27e25T^{2} \)
7 \( 1 + 6.58e15T + 1.85e31T^{2} \)
11 \( 1 - 6.37e18T + 3.40e38T^{2} \)
13 \( 1 - 5.56e20T + 1.64e41T^{2} \)
17 \( 1 - 9.53e22T + 3.36e45T^{2} \)
19 \( 1 + 3.47e23T + 2.06e47T^{2} \)
23 \( 1 - 1.10e25T + 2.42e50T^{2} \)
29 \( 1 - 1.30e25T + 1.28e54T^{2} \)
31 \( 1 - 3.43e27T + 1.51e55T^{2} \)
37 \( 1 + 5.74e27T + 1.05e58T^{2} \)
41 \( 1 + 1.61e29T + 4.70e59T^{2} \)
43 \( 1 + 7.64e29T + 2.74e60T^{2} \)
47 \( 1 - 4.32e30T + 7.37e61T^{2} \)
53 \( 1 - 1.22e32T + 6.28e63T^{2} \)
59 \( 1 - 7.14e32T + 3.32e65T^{2} \)
61 \( 1 + 3.85e31T + 1.14e66T^{2} \)
67 \( 1 - 8.57e33T + 3.67e67T^{2} \)
71 \( 1 - 7.23e33T + 3.13e68T^{2} \)
73 \( 1 + 1.65e34T + 8.76e68T^{2} \)
79 \( 1 + 9.85e34T + 1.63e70T^{2} \)
83 \( 1 - 4.46e34T + 1.01e71T^{2} \)
89 \( 1 - 1.72e36T + 1.34e72T^{2} \)
97 \( 1 - 4.81e36T + 3.24e73T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−18.92295359697899073731511353687, −16.87358798325217309157824296804, −15.84735804575658006118092166087, −13.08662161694281413678592112086, −11.83403183625011824699565345154, −10.24672736015074998865242365012, −6.61171213408361419346297653220, −5.69411201142775513597962334611, −3.72453168370163521021637470905, −0.844811819902837591930642767390, 0.844811819902837591930642767390, 3.72453168370163521021637470905, 5.69411201142775513597962334611, 6.61171213408361419346297653220, 10.24672736015074998865242365012, 11.83403183625011824699565345154, 13.08662161694281413678592112086, 15.84735804575658006118092166087, 16.87358798325217309157824296804, 18.92295359697899073731511353687

Graph of the $Z$-function along the critical line