Properties

Label 2-19e2-19.10-c2-0-32
Degree $2$
Conductor $361$
Sign $0.166 + 0.986i$
Analytic cond. $9.83653$
Root an. cond. $3.13632$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−2.94 + 0.520i)2-s + (−0.769 − 0.916i)3-s + (4.67 − 1.70i)4-s + (6.60 + 2.40i)5-s + (2.74 + 2.30i)6-s + (4.29 − 7.43i)7-s + (−2.52 + 1.45i)8-s + (1.31 − 7.45i)9-s + (−20.7 − 3.65i)10-s + (−4.77 − 8.26i)11-s + (−5.15 − 2.97i)12-s + (11.5 − 13.7i)13-s + (−8.79 + 24.1i)14-s + (−2.87 − 7.90i)15-s + (−8.55 + 7.17i)16-s + (2.30 + 13.0i)17-s + ⋯
L(s)  = 1  + (−1.47 + 0.260i)2-s + (−0.256 − 0.305i)3-s + (1.16 − 0.425i)4-s + (1.32 + 0.480i)5-s + (0.457 + 0.384i)6-s + (0.613 − 1.06i)7-s + (−0.315 + 0.182i)8-s + (0.146 − 0.828i)9-s + (−2.07 − 0.365i)10-s + (−0.433 − 0.751i)11-s + (−0.429 − 0.247i)12-s + (0.890 − 1.06i)13-s + (−0.628 + 1.72i)14-s + (−0.191 − 0.527i)15-s + (−0.534 + 0.448i)16-s + (0.135 + 0.767i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 361 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.166 + 0.986i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 361 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.166 + 0.986i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(361\)    =    \(19^{2}\)
Sign: $0.166 + 0.986i$
Analytic conductor: \(9.83653\)
Root analytic conductor: \(3.13632\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{361} (333, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 361,\ (\ :1),\ 0.166 + 0.986i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.686536 - 0.580418i\)
\(L(\frac12)\) \(\approx\) \(0.686536 - 0.580418i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad19 \( 1 \)
good2 \( 1 + (2.94 - 0.520i)T + (3.75 - 1.36i)T^{2} \)
3 \( 1 + (0.769 + 0.916i)T + (-1.56 + 8.86i)T^{2} \)
5 \( 1 + (-6.60 - 2.40i)T + (19.1 + 16.0i)T^{2} \)
7 \( 1 + (-4.29 + 7.43i)T + (-24.5 - 42.4i)T^{2} \)
11 \( 1 + (4.77 + 8.26i)T + (-60.5 + 104. i)T^{2} \)
13 \( 1 + (-11.5 + 13.7i)T + (-29.3 - 166. i)T^{2} \)
17 \( 1 + (-2.30 - 13.0i)T + (-271. + 98.8i)T^{2} \)
23 \( 1 + (13.3 - 4.84i)T + (405. - 340. i)T^{2} \)
29 \( 1 + (19.3 + 3.40i)T + (790. + 287. i)T^{2} \)
31 \( 1 + (6.97 + 4.02i)T + (480.5 + 832. i)T^{2} \)
37 \( 1 + 32.1iT - 1.36e3T^{2} \)
41 \( 1 + (3.54 + 4.22i)T + (-291. + 1.65e3i)T^{2} \)
43 \( 1 + (68.9 + 25.0i)T + (1.41e3 + 1.18e3i)T^{2} \)
47 \( 1 + (4.20 - 23.8i)T + (-2.07e3 - 755. i)T^{2} \)
53 \( 1 + (-20.6 - 56.6i)T + (-2.15e3 + 1.80e3i)T^{2} \)
59 \( 1 + (-37.6 + 6.64i)T + (3.27e3 - 1.19e3i)T^{2} \)
61 \( 1 + (-74.3 + 27.0i)T + (2.85e3 - 2.39e3i)T^{2} \)
67 \( 1 + (33.2 + 5.85i)T + (4.21e3 + 1.53e3i)T^{2} \)
71 \( 1 + (-8.54 + 23.4i)T + (-3.86e3 - 3.24e3i)T^{2} \)
73 \( 1 + (21.4 - 17.9i)T + (925. - 5.24e3i)T^{2} \)
79 \( 1 + (-14.7 - 17.5i)T + (-1.08e3 + 6.14e3i)T^{2} \)
83 \( 1 + (-53.3 + 92.3i)T + (-3.44e3 - 5.96e3i)T^{2} \)
89 \( 1 + (-77.1 + 91.9i)T + (-1.37e3 - 7.80e3i)T^{2} \)
97 \( 1 + (8.08 - 1.42i)T + (8.84e3 - 3.21e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.51873140158344162892697264444, −10.26294665171480320406038282889, −9.183944825580361914935618291021, −8.217986475213423099701052965713, −7.40203227945321200172258543071, −6.36520242485627861901460051579, −5.69193729663296577780963116961, −3.65741058570560293441588666332, −1.76784455381392630320421235411, −0.70795830781822465163001490832, 1.68668794376530361587487417573, 2.20768679412560533749241485500, 4.79346523564029769108981873268, 5.50775762073853343893199694561, 6.84366310187313027046598523806, 8.143478599121616010008175330097, 8.805547473788398538987377984678, 9.669387125086608810807709841948, 10.13140789377481719199560230413, 11.23166862604591647273599872407

Graph of the $Z$-function along the critical line