| L(s)  = 1  |   + 1.17·2-s   − 1.17·3-s   − 0.618·4-s   + 1.23·5-s   − 1.38·6-s   − 4.23·7-s   − 3.07·8-s   − 1.61·9-s   + 1.45·10-s   − 3.61·11-s   + 0.726·12-s   + 3.07·13-s   − 4.97·14-s   − 1.45·15-s   − 2.38·16-s   + 2.47·17-s   − 1.90·18-s     − 0.763·20-s   + 4.97·21-s   − 4.25·22-s   − 2.61·23-s   + 3.61·24-s   − 3.47·25-s   + 3.61·26-s   + 5.42·27-s   + 2.61·28-s   − 2.62·29-s  + ⋯ | 
 
| L(s)  = 1  |   + 0.831·2-s   − 0.678·3-s   − 0.309·4-s   + 0.552·5-s   − 0.564·6-s   − 1.60·7-s   − 1.08·8-s   − 0.539·9-s   + 0.459·10-s   − 1.09·11-s   + 0.209·12-s   + 0.853·13-s   − 1.33·14-s   − 0.375·15-s   − 0.595·16-s   + 0.599·17-s   − 0.448·18-s     − 0.170·20-s   + 1.08·21-s   − 0.906·22-s   − 0.545·23-s   + 0.738·24-s   − 0.694·25-s   + 0.709·26-s   + 1.04·27-s   + 0.494·28-s   − 0.488·29-s  + ⋯ | 
 
\[\begin{aligned}\Lambda(s)=\mathstrut & 361 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 361 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      |  \(L(1)\)  | 
            \(=\) | 
             \(0\)  | 
    
    
      |  \(L(\frac12)\)  | 
            \(=\) | 
      
       \(0\)  | 
    
    
        
      |  \(L(\frac{3}{2})\)  | 
             | 
       not available  | 
          
    
      |  \(L(1)\)  | 
             | 
       not available  | 
          
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
 | $p$ | $F_p(T)$ | 
|---|
| bad | 19 |  \( 1 \)  | 
| good | 2 |  \( 1 - 1.17T + 2T^{2} \)  | 
 | 3 |  \( 1 + 1.17T + 3T^{2} \)  | 
 | 5 |  \( 1 - 1.23T + 5T^{2} \)  | 
 | 7 |  \( 1 + 4.23T + 7T^{2} \)  | 
 | 11 |  \( 1 + 3.61T + 11T^{2} \)  | 
 | 13 |  \( 1 - 3.07T + 13T^{2} \)  | 
 | 17 |  \( 1 - 2.47T + 17T^{2} \)  | 
 | 23 |  \( 1 + 2.61T + 23T^{2} \)  | 
 | 29 |  \( 1 + 2.62T + 29T^{2} \)  | 
 | 31 |  \( 1 + 1.17T + 31T^{2} \)  | 
 | 37 |  \( 1 + 6.43T + 37T^{2} \)  | 
 | 41 |  \( 1 - 9.23T + 41T^{2} \)  | 
 | 43 |  \( 1 + 6.32T + 43T^{2} \)  | 
 | 47 |  \( 1 + 2.52T + 47T^{2} \)  | 
 | 53 |  \( 1 - 0.449T + 53T^{2} \)  | 
 | 59 |  \( 1 + 2.80T + 59T^{2} \)  | 
 | 61 |  \( 1 + 0.527T + 61T^{2} \)  | 
 | 67 |  \( 1 + 0.171T + 67T^{2} \)  | 
 | 71 |  \( 1 - 12.1T + 71T^{2} \)  | 
 | 73 |  \( 1 - 9T + 73T^{2} \)  | 
 | 79 |  \( 1 + 7.60T + 79T^{2} \)  | 
 | 83 |  \( 1 - 1.23T + 83T^{2} \)  | 
 | 89 |  \( 1 + 17.7T + 89T^{2} \)  | 
 | 97 |  \( 1 + 15.6T + 97T^{2} \)  | 
|  show more |  | 
| show less |  | 
 
     \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−11.06402681277488933976408638370, −10.05558877090894494927164344572, −9.356540448013613219754397813107, −8.224510779719056415531142987189, −6.62087999974218565435303278894, −5.81855294021072840271440899038, −5.37857801382705362187067334297, −3.80026632913059839285128960786, −2.83818145584408476715326291747, 0, 
2.83818145584408476715326291747, 3.80026632913059839285128960786, 5.37857801382705362187067334297, 5.81855294021072840271440899038, 6.62087999974218565435303278894, 8.224510779719056415531142987189, 9.356540448013613219754397813107, 10.05558877090894494927164344572, 11.06402681277488933976408638370