L(s) = 1 | + (0.707 − 0.707i)2-s − 1.00i·4-s + (−0.0761 + 0.382i)5-s + (0.541 − 1.30i)7-s + (−0.707 − 0.707i)8-s + (−0.382 − 0.923i)9-s + (0.216 + 0.324i)10-s + (−0.541 − 1.30i)14-s − 1.00·16-s + (−0.923 − 0.382i)18-s + (−1.63 + 0.324i)19-s + (0.382 + 0.0761i)20-s + (0.783 + 0.324i)25-s + (−1.30 − 0.541i)28-s + i·31-s + (−0.707 + 0.707i)32-s + ⋯ |
L(s) = 1 | + (0.707 − 0.707i)2-s − 1.00i·4-s + (−0.0761 + 0.382i)5-s + (0.541 − 1.30i)7-s + (−0.707 − 0.707i)8-s + (−0.382 − 0.923i)9-s + (0.216 + 0.324i)10-s + (−0.541 − 1.30i)14-s − 1.00·16-s + (−0.923 − 0.382i)18-s + (−1.63 + 0.324i)19-s + (0.382 + 0.0761i)20-s + (0.783 + 0.324i)25-s + (−1.30 − 0.541i)28-s + i·31-s + (−0.707 + 0.707i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1984 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.634 + 0.773i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1984 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.634 + 0.773i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.538000164\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.538000164\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.707 + 0.707i)T \) |
| 31 | \( 1 - iT \) |
good | 3 | \( 1 + (0.382 + 0.923i)T^{2} \) |
| 5 | \( 1 + (0.0761 - 0.382i)T + (-0.923 - 0.382i)T^{2} \) |
| 7 | \( 1 + (-0.541 + 1.30i)T + (-0.707 - 0.707i)T^{2} \) |
| 11 | \( 1 + (-0.382 + 0.923i)T^{2} \) |
| 13 | \( 1 + (0.923 - 0.382i)T^{2} \) |
| 17 | \( 1 + iT^{2} \) |
| 19 | \( 1 + (1.63 - 0.324i)T + (0.923 - 0.382i)T^{2} \) |
| 23 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 29 | \( 1 + (-0.382 - 0.923i)T^{2} \) |
| 37 | \( 1 + (-0.923 - 0.382i)T^{2} \) |
| 41 | \( 1 + (-1.30 + 0.541i)T + (0.707 - 0.707i)T^{2} \) |
| 43 | \( 1 + (0.382 - 0.923i)T^{2} \) |
| 47 | \( 1 + (-1.30 + 1.30i)T - iT^{2} \) |
| 53 | \( 1 + (-0.382 + 0.923i)T^{2} \) |
| 59 | \( 1 + (-0.382 + 1.92i)T + (-0.923 - 0.382i)T^{2} \) |
| 61 | \( 1 + (0.382 + 0.923i)T^{2} \) |
| 67 | \( 1 + (1.08 - 1.63i)T + (-0.382 - 0.923i)T^{2} \) |
| 71 | \( 1 + (-0.292 + 0.707i)T + (-0.707 - 0.707i)T^{2} \) |
| 73 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 79 | \( 1 - iT^{2} \) |
| 83 | \( 1 + (-0.923 + 0.382i)T^{2} \) |
| 89 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 97 | \( 1 - 1.84iT - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.170152355526575637548133943227, −8.450122233695874397584509067011, −7.23806906045048770147878387362, −6.66671765731666246768720779022, −5.84282263155001985660382411097, −4.76657993077276397757475466711, −3.99966689746712817424183431874, −3.38285537613082161250820354269, −2.18372756939707383393416092157, −0.892178960139212753480368462383,
2.18305130862488984633103743682, 2.77330886096013433575365194137, 4.33444970316350860550421533334, 4.76260544617283612967526364172, 5.75738614831445316189597746220, 6.13257243324627281895394446481, 7.36383759165892393536862939939, 8.077736060251856419560358670365, 8.715480382174563564443011339474, 9.135437825981540743981604345971