L(s) = 1 | + (−0.707 − 0.707i)2-s + 1.00i·4-s + (−0.617 + 0.923i)5-s + (1.30 − 0.541i)7-s + (0.707 − 0.707i)8-s + (0.923 + 0.382i)9-s + (1.08 − 0.216i)10-s + (−1.30 − 0.541i)14-s − 1.00·16-s + (−0.382 − 0.923i)18-s + (0.324 − 0.216i)19-s + (−0.923 − 0.617i)20-s + (−0.0897 − 0.216i)25-s + (0.541 + 1.30i)28-s − i·31-s + (0.707 + 0.707i)32-s + ⋯ |
L(s) = 1 | + (−0.707 − 0.707i)2-s + 1.00i·4-s + (−0.617 + 0.923i)5-s + (1.30 − 0.541i)7-s + (0.707 − 0.707i)8-s + (0.923 + 0.382i)9-s + (1.08 − 0.216i)10-s + (−1.30 − 0.541i)14-s − 1.00·16-s + (−0.382 − 0.923i)18-s + (0.324 − 0.216i)19-s + (−0.923 − 0.617i)20-s + (−0.0897 − 0.216i)25-s + (0.541 + 1.30i)28-s − i·31-s + (0.707 + 0.707i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1984 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.995 + 0.0980i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1984 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.995 + 0.0980i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9125115649\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9125115649\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.707 + 0.707i)T \) |
| 31 | \( 1 + iT \) |
good | 3 | \( 1 + (-0.923 - 0.382i)T^{2} \) |
| 5 | \( 1 + (0.617 - 0.923i)T + (-0.382 - 0.923i)T^{2} \) |
| 7 | \( 1 + (-1.30 + 0.541i)T + (0.707 - 0.707i)T^{2} \) |
| 11 | \( 1 + (0.923 - 0.382i)T^{2} \) |
| 13 | \( 1 + (0.382 - 0.923i)T^{2} \) |
| 17 | \( 1 - iT^{2} \) |
| 19 | \( 1 + (-0.324 + 0.216i)T + (0.382 - 0.923i)T^{2} \) |
| 23 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 29 | \( 1 + (0.923 + 0.382i)T^{2} \) |
| 37 | \( 1 + (-0.382 - 0.923i)T^{2} \) |
| 41 | \( 1 + (0.541 - 1.30i)T + (-0.707 - 0.707i)T^{2} \) |
| 43 | \( 1 + (-0.923 + 0.382i)T^{2} \) |
| 47 | \( 1 + (0.541 + 0.541i)T + iT^{2} \) |
| 53 | \( 1 + (0.923 - 0.382i)T^{2} \) |
| 59 | \( 1 + (0.923 - 1.38i)T + (-0.382 - 0.923i)T^{2} \) |
| 61 | \( 1 + (-0.923 - 0.382i)T^{2} \) |
| 67 | \( 1 + (-1.63 - 0.324i)T + (0.923 + 0.382i)T^{2} \) |
| 71 | \( 1 + (-1.70 + 0.707i)T + (0.707 - 0.707i)T^{2} \) |
| 73 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 79 | \( 1 + iT^{2} \) |
| 83 | \( 1 + (-0.382 + 0.923i)T^{2} \) |
| 89 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 97 | \( 1 + 0.765iT - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.546868586165047902831525941722, −8.418135198204544223647383507925, −7.76670989925709252187810184178, −7.36983897849146028571972063538, −6.59364531178916258142172239598, −4.97748841602872903618199432528, −4.24728786209041054968509552576, −3.44305154075778060702549495398, −2.29524560826845892351682193508, −1.27257035456235441016621518908,
1.07499357010188044969447869996, 1.97811577226503272670195040594, 3.84513983545750180537635236010, 4.90568193877656213398587195256, 5.13278628201327798570186556287, 6.35179238430660434538107029717, 7.23489744388181450009596208530, 7.987997175728063461912335494654, 8.454478268980492484385281095790, 9.133994270623492757992394559183