L(s) = 1 | + (0.951 − 0.309i)3-s + 0.618·5-s + (−0.587 + 0.809i)7-s + (0.5 + 1.53i)13-s + (0.587 − 0.190i)15-s + (0.809 − 0.587i)17-s + (0.951 + 0.309i)19-s + (−0.309 + 0.951i)21-s + (−0.587 − 0.809i)23-s − 0.618·25-s + (−0.587 + 0.809i)27-s + (0.190 − 0.587i)29-s + (−0.951 − 0.309i)31-s + (−0.363 + 0.500i)35-s + 37-s + ⋯ |
L(s) = 1 | + (0.951 − 0.309i)3-s + 0.618·5-s + (−0.587 + 0.809i)7-s + (0.5 + 1.53i)13-s + (0.587 − 0.190i)15-s + (0.809 − 0.587i)17-s + (0.951 + 0.309i)19-s + (−0.309 + 0.951i)21-s + (−0.587 − 0.809i)23-s − 0.618·25-s + (−0.587 + 0.809i)27-s + (0.190 − 0.587i)29-s + (−0.951 − 0.309i)31-s + (−0.363 + 0.500i)35-s + 37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1984 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.938 - 0.344i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1984 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.938 - 0.344i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.657870207\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.657870207\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 31 | \( 1 + (0.951 + 0.309i)T \) |
good | 3 | \( 1 + (-0.951 + 0.309i)T + (0.809 - 0.587i)T^{2} \) |
| 5 | \( 1 - 0.618T + T^{2} \) |
| 7 | \( 1 + (0.587 - 0.809i)T + (-0.309 - 0.951i)T^{2} \) |
| 11 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 13 | \( 1 + (-0.5 - 1.53i)T + (-0.809 + 0.587i)T^{2} \) |
| 17 | \( 1 + (-0.809 + 0.587i)T + (0.309 - 0.951i)T^{2} \) |
| 19 | \( 1 + (-0.951 - 0.309i)T + (0.809 + 0.587i)T^{2} \) |
| 23 | \( 1 + (0.587 + 0.809i)T + (-0.309 + 0.951i)T^{2} \) |
| 29 | \( 1 + (-0.190 + 0.587i)T + (-0.809 - 0.587i)T^{2} \) |
| 37 | \( 1 - T + T^{2} \) |
| 41 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 43 | \( 1 + (-0.587 - 0.190i)T + (0.809 + 0.587i)T^{2} \) |
| 47 | \( 1 + (-0.587 + 0.190i)T + (0.809 - 0.587i)T^{2} \) |
| 53 | \( 1 + (-0.809 + 0.587i)T + (0.309 - 0.951i)T^{2} \) |
| 59 | \( 1 + (0.951 - 0.309i)T + (0.809 - 0.587i)T^{2} \) |
| 61 | \( 1 + T^{2} \) |
| 67 | \( 1 + iT - T^{2} \) |
| 71 | \( 1 + (0.951 + 1.30i)T + (-0.309 + 0.951i)T^{2} \) |
| 73 | \( 1 + (1.30 + 0.951i)T + (0.309 + 0.951i)T^{2} \) |
| 79 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 83 | \( 1 + (1.53 + 0.5i)T + (0.809 + 0.587i)T^{2} \) |
| 89 | \( 1 + (-1.30 - 0.951i)T + (0.309 + 0.951i)T^{2} \) |
| 97 | \( 1 + (0.809 + 0.587i)T + (0.309 + 0.951i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.397904999627430210743030000091, −8.772944903273448986942880103594, −7.88635667438275206206397428979, −7.18762492766664410185207344013, −6.08029919643724681972828133929, −5.70863258042475344763673631170, −4.38989956192805635676232590720, −3.33450199780905893891616981680, −2.48778799847449776539721405219, −1.72116060258528191578250837782,
1.21935206800908537906641241670, 2.71926357824756536903725371882, 3.41147836899457305430451078416, 4.04943079453308849619638043413, 5.63028497198983850609157688259, 5.83521314651275898936694134630, 7.21871080863734393395745222628, 7.78009202241179534203051045928, 8.582452520458737709524295430086, 9.397890938371335075018436428294