Properties

Label 2-1984-1.1-c3-0-135
Degree $2$
Conductor $1984$
Sign $-1$
Analytic cond. $117.059$
Root an. cond. $10.8194$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s − 5-s − 11·7-s − 23·9-s + 18·11-s + 82·13-s − 2·15-s − 6·17-s − 25·19-s − 22·21-s + 58·23-s − 124·25-s − 100·27-s − 180·29-s + 31·31-s + 36·33-s + 11·35-s + 146·37-s + 164·39-s + 47·41-s + 12·43-s + 23·45-s − 136·47-s − 222·49-s − 12·51-s + 232·53-s − 18·55-s + ⋯
L(s)  = 1  + 0.384·3-s − 0.0894·5-s − 0.593·7-s − 0.851·9-s + 0.493·11-s + 1.74·13-s − 0.0344·15-s − 0.0856·17-s − 0.301·19-s − 0.228·21-s + 0.525·23-s − 0.991·25-s − 0.712·27-s − 1.15·29-s + 0.179·31-s + 0.189·33-s + 0.0531·35-s + 0.648·37-s + 0.673·39-s + 0.179·41-s + 0.0425·43-s + 0.0761·45-s − 0.422·47-s − 0.647·49-s − 0.0329·51-s + 0.601·53-s − 0.0441·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1984 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1984 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1984\)    =    \(2^{6} \cdot 31\)
Sign: $-1$
Analytic conductor: \(117.059\)
Root analytic conductor: \(10.8194\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1984,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
31 \( 1 - p T \)
good3 \( 1 - 2 T + p^{3} T^{2} \)
5 \( 1 + T + p^{3} T^{2} \)
7 \( 1 + 11 T + p^{3} T^{2} \)
11 \( 1 - 18 T + p^{3} T^{2} \)
13 \( 1 - 82 T + p^{3} T^{2} \)
17 \( 1 + 6 T + p^{3} T^{2} \)
19 \( 1 + 25 T + p^{3} T^{2} \)
23 \( 1 - 58 T + p^{3} T^{2} \)
29 \( 1 + 180 T + p^{3} T^{2} \)
37 \( 1 - 146 T + p^{3} T^{2} \)
41 \( 1 - 47 T + p^{3} T^{2} \)
43 \( 1 - 12 T + p^{3} T^{2} \)
47 \( 1 + 136 T + p^{3} T^{2} \)
53 \( 1 - 232 T + p^{3} T^{2} \)
59 \( 1 + 715 T + p^{3} T^{2} \)
61 \( 1 - 518 T + p^{3} T^{2} \)
67 \( 1 - 436 T + p^{3} T^{2} \)
71 \( 1 - 387 T + p^{3} T^{2} \)
73 \( 1 - 678 T + p^{3} T^{2} \)
79 \( 1 - 660 T + p^{3} T^{2} \)
83 \( 1 - 382 T + p^{3} T^{2} \)
89 \( 1 + 800 T + p^{3} T^{2} \)
97 \( 1 + 1631 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.416089344174517439848577345648, −7.86625913133952878459368045469, −6.67617482572258890607920273580, −6.13230859509782357222004674483, −5.35245911396319329420701995310, −3.94838939184145128024380389637, −3.52819769430534864452598647562, −2.46876720775046336767675192298, −1.28474705597995180875405758329, 0, 1.28474705597995180875405758329, 2.46876720775046336767675192298, 3.52819769430534864452598647562, 3.94838939184145128024380389637, 5.35245911396319329420701995310, 6.13230859509782357222004674483, 6.67617482572258890607920273580, 7.86625913133952878459368045469, 8.416089344174517439848577345648

Graph of the $Z$-function along the critical line