Properties

Label 2-1984-1.1-c1-0-46
Degree $2$
Conductor $1984$
Sign $-1$
Analytic cond. $15.8423$
Root an. cond. $3.98024$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.14·3-s − 2.48·5-s − 0.657·7-s − 1.68·9-s + 2.68·11-s + 0.853·13-s − 2.85·15-s − 0.853·17-s + 6.02·19-s − 0.753·21-s − 5.14·23-s + 1.19·25-s − 5.37·27-s − 3.53·29-s + 31-s + 3.07·33-s + 1.63·35-s − 2·37-s + 0.978·39-s − 3.80·41-s − 2.12·43-s + 4.19·45-s − 11.0·47-s − 6.56·49-s − 0.978·51-s + 6.97·53-s − 6.68·55-s + ⋯
L(s)  = 1  + 0.661·3-s − 1.11·5-s − 0.248·7-s − 0.561·9-s + 0.809·11-s + 0.236·13-s − 0.736·15-s − 0.207·17-s + 1.38·19-s − 0.164·21-s − 1.07·23-s + 0.239·25-s − 1.03·27-s − 0.657·29-s + 0.179·31-s + 0.535·33-s + 0.276·35-s − 0.328·37-s + 0.156·39-s − 0.593·41-s − 0.324·43-s + 0.625·45-s − 1.61·47-s − 0.938·49-s − 0.137·51-s + 0.958·53-s − 0.901·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1984 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1984 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1984\)    =    \(2^{6} \cdot 31\)
Sign: $-1$
Analytic conductor: \(15.8423\)
Root analytic conductor: \(3.98024\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1984,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
31 \( 1 - T \)
good3 \( 1 - 1.14T + 3T^{2} \)
5 \( 1 + 2.48T + 5T^{2} \)
7 \( 1 + 0.657T + 7T^{2} \)
11 \( 1 - 2.68T + 11T^{2} \)
13 \( 1 - 0.853T + 13T^{2} \)
17 \( 1 + 0.853T + 17T^{2} \)
19 \( 1 - 6.02T + 19T^{2} \)
23 \( 1 + 5.14T + 23T^{2} \)
29 \( 1 + 3.53T + 29T^{2} \)
37 \( 1 + 2T + 37T^{2} \)
41 \( 1 + 3.80T + 41T^{2} \)
43 \( 1 + 2.12T + 43T^{2} \)
47 \( 1 + 11.0T + 47T^{2} \)
53 \( 1 - 6.97T + 53T^{2} \)
59 \( 1 + 12.7T + 59T^{2} \)
61 \( 1 + 2.56T + 61T^{2} \)
67 \( 1 - 1.31T + 67T^{2} \)
71 \( 1 + 10.6T + 71T^{2} \)
73 \( 1 + 7.95T + 73T^{2} \)
79 \( 1 + 4.16T + 79T^{2} \)
83 \( 1 - 2.68T + 83T^{2} \)
89 \( 1 + 4.12T + 89T^{2} \)
97 \( 1 - 6.15T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.713993489759703313742441466205, −7.997509274327371554205771294322, −7.45510871812731175671941216848, −6.49223338176464483798559167706, −5.60563225978045066306347086650, −4.46189757149307393535620511291, −3.57854976771479518327149191722, −3.10613153996286468466820317611, −1.66954154508368821370521476413, 0, 1.66954154508368821370521476413, 3.10613153996286468466820317611, 3.57854976771479518327149191722, 4.46189757149307393535620511291, 5.60563225978045066306347086650, 6.49223338176464483798559167706, 7.45510871812731175671941216848, 7.997509274327371554205771294322, 8.713993489759703313742441466205

Graph of the $Z$-function along the critical line