Properties

Label 2-1984-1.1-c1-0-43
Degree $2$
Conductor $1984$
Sign $-1$
Analytic cond. $15.8423$
Root an. cond. $3.98024$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 1.37·5-s + 3.37·7-s + 9-s + 2·11-s − 6.74·13-s − 2.74·15-s − 2·17-s + 0.627·19-s − 6.74·21-s − 6.74·23-s − 3.11·25-s + 4·27-s − 8·29-s − 31-s − 4·33-s + 4.62·35-s + 6.74·37-s + 13.4·39-s + 1.37·41-s + 4.74·43-s + 1.37·45-s + 4.37·49-s + 4·51-s + 2.74·55-s − 1.25·57-s + 3.37·59-s + ⋯
L(s)  = 1  − 1.15·3-s + 0.613·5-s + 1.27·7-s + 0.333·9-s + 0.603·11-s − 1.87·13-s − 0.708·15-s − 0.485·17-s + 0.144·19-s − 1.47·21-s − 1.40·23-s − 0.623·25-s + 0.769·27-s − 1.48·29-s − 0.179·31-s − 0.696·33-s + 0.782·35-s + 1.10·37-s + 2.15·39-s + 0.214·41-s + 0.723·43-s + 0.204·45-s + 0.624·49-s + 0.560·51-s + 0.370·55-s − 0.166·57-s + 0.439·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1984 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1984 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1984\)    =    \(2^{6} \cdot 31\)
Sign: $-1$
Analytic conductor: \(15.8423\)
Root analytic conductor: \(3.98024\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1984,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
31 \( 1 + T \)
good3 \( 1 + 2T + 3T^{2} \)
5 \( 1 - 1.37T + 5T^{2} \)
7 \( 1 - 3.37T + 7T^{2} \)
11 \( 1 - 2T + 11T^{2} \)
13 \( 1 + 6.74T + 13T^{2} \)
17 \( 1 + 2T + 17T^{2} \)
19 \( 1 - 0.627T + 19T^{2} \)
23 \( 1 + 6.74T + 23T^{2} \)
29 \( 1 + 8T + 29T^{2} \)
37 \( 1 - 6.74T + 37T^{2} \)
41 \( 1 - 1.37T + 41T^{2} \)
43 \( 1 - 4.74T + 43T^{2} \)
47 \( 1 + 47T^{2} \)
53 \( 1 + 53T^{2} \)
59 \( 1 - 3.37T + 59T^{2} \)
61 \( 1 + 10.7T + 61T^{2} \)
67 \( 1 - 4T + 67T^{2} \)
71 \( 1 + 11.3T + 71T^{2} \)
73 \( 1 + 11.4T + 73T^{2} \)
79 \( 1 + 9.48T + 79T^{2} \)
83 \( 1 + 11.4T + 83T^{2} \)
89 \( 1 - 8.74T + 89T^{2} \)
97 \( 1 - 0.116T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.889677826374363436663515944909, −7.76748446426564412808500070591, −7.26889589032955982168711849273, −6.10833188179500883462055166062, −5.64895077327935162333522057245, −4.81044264447537159269022685761, −4.19473140252903069283378206725, −2.45319443324797614447375702784, −1.60428491081981852492702894437, 0, 1.60428491081981852492702894437, 2.45319443324797614447375702784, 4.19473140252903069283378206725, 4.81044264447537159269022685761, 5.64895077327935162333522057245, 6.10833188179500883462055166062, 7.26889589032955982168711849273, 7.76748446426564412808500070591, 8.889677826374363436663515944909

Graph of the $Z$-function along the critical line