| L(s) = 1 | + (0.809 − 0.587i)5-s + (−1.43 − 4.42i)7-s + (3.31 − 0.130i)11-s + (4.88 + 3.54i)13-s + (−2.68 + 1.95i)17-s + (0.846 − 2.60i)19-s + 1.97·23-s + (0.309 − 0.951i)25-s + (−0.708 − 2.18i)29-s + (5.62 + 4.08i)31-s + (−3.76 − 2.73i)35-s + (−1.18 − 3.64i)37-s + (−1.17 + 3.60i)41-s + 7.98·43-s + (3.75 − 11.5i)47-s + ⋯ |
| L(s) = 1 | + (0.361 − 0.262i)5-s + (−0.543 − 1.67i)7-s + (0.999 − 0.0394i)11-s + (1.35 + 0.983i)13-s + (−0.651 + 0.473i)17-s + (0.194 − 0.597i)19-s + 0.412·23-s + (0.0618 − 0.190i)25-s + (−0.131 − 0.405i)29-s + (1.01 + 0.733i)31-s + (−0.636 − 0.462i)35-s + (−0.194 − 0.599i)37-s + (−0.183 + 0.563i)41-s + 1.21·43-s + (0.548 − 1.68i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1980 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.368 + 0.929i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1980 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.368 + 0.929i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.920354398\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.920354398\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-0.809 + 0.587i)T \) |
| 11 | \( 1 + (-3.31 + 0.130i)T \) |
| good | 7 | \( 1 + (1.43 + 4.42i)T + (-5.66 + 4.11i)T^{2} \) |
| 13 | \( 1 + (-4.88 - 3.54i)T + (4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (2.68 - 1.95i)T + (5.25 - 16.1i)T^{2} \) |
| 19 | \( 1 + (-0.846 + 2.60i)T + (-15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 - 1.97T + 23T^{2} \) |
| 29 | \( 1 + (0.708 + 2.18i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (-5.62 - 4.08i)T + (9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (1.18 + 3.64i)T + (-29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (1.17 - 3.60i)T + (-33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 - 7.98T + 43T^{2} \) |
| 47 | \( 1 + (-3.75 + 11.5i)T + (-38.0 - 27.6i)T^{2} \) |
| 53 | \( 1 + (9.30 + 6.76i)T + (16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (2.19 + 6.75i)T + (-47.7 + 34.6i)T^{2} \) |
| 61 | \( 1 + (-1.08 + 0.786i)T + (18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 + 7.18T + 67T^{2} \) |
| 71 | \( 1 + (-5.45 + 3.96i)T + (21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (2.69 + 8.28i)T + (-59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (4.43 + 3.22i)T + (24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (6.64 - 4.82i)T + (25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 - 11.4T + 89T^{2} \) |
| 97 | \( 1 + (5.29 + 3.84i)T + (29.9 + 92.2i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.079592527400753397830786325183, −8.383856437916450938553525924124, −7.24832513179865932058272295324, −6.59829708535371268654514654441, −6.18003166616389193500742121330, −4.72128048908885296644183083742, −4.04749135745352740577637967871, −3.38331497767547525080883879919, −1.74576808800828612881839586953, −0.792027903552969779912189727384,
1.29719676967308473823953061538, 2.59716308339777069058354011622, 3.24578156548487356066992110021, 4.40848819090582618344637266556, 5.70980976175049792603059982798, 5.96787219275945031667632336741, 6.73015181403212748000192051519, 7.88323424842573589382161351609, 8.801595857428060047261774357921, 9.133013359074002678759602681205