L(s) = 1 | + (0.809 + 0.587i)5-s + (0.900 − 2.77i)7-s + (1.20 + 3.09i)11-s + (1.10 − 0.800i)13-s + (4.44 + 3.23i)17-s + (−0.402 − 1.23i)19-s − 1.82·23-s + (0.309 + 0.951i)25-s + (−1.16 + 3.59i)29-s + (1.99 − 1.44i)31-s + (2.35 − 1.71i)35-s + (1.02 − 3.15i)37-s + (1.25 + 3.85i)41-s + 5.61·43-s + (−1.19 − 3.67i)47-s + ⋯ |
L(s) = 1 | + (0.361 + 0.262i)5-s + (0.340 − 1.04i)7-s + (0.362 + 0.931i)11-s + (0.305 − 0.222i)13-s + (1.07 + 0.783i)17-s + (−0.0923 − 0.284i)19-s − 0.381·23-s + (0.0618 + 0.190i)25-s + (−0.216 + 0.666i)29-s + (0.357 − 0.259i)31-s + (0.398 − 0.289i)35-s + (0.168 − 0.518i)37-s + (0.195 + 0.602i)41-s + 0.856·43-s + (−0.174 − 0.536i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1980 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 - 0.0335i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1980 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.999 - 0.0335i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.105599829\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.105599829\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-0.809 - 0.587i)T \) |
| 11 | \( 1 + (-1.20 - 3.09i)T \) |
good | 7 | \( 1 + (-0.900 + 2.77i)T + (-5.66 - 4.11i)T^{2} \) |
| 13 | \( 1 + (-1.10 + 0.800i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (-4.44 - 3.23i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (0.402 + 1.23i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 + 1.82T + 23T^{2} \) |
| 29 | \( 1 + (1.16 - 3.59i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (-1.99 + 1.44i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (-1.02 + 3.15i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (-1.25 - 3.85i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 - 5.61T + 43T^{2} \) |
| 47 | \( 1 + (1.19 + 3.67i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (3.12 - 2.26i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (-3.44 + 10.5i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (-1.18 - 0.858i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 - 11.7T + 67T^{2} \) |
| 71 | \( 1 + (-2.68 - 1.94i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (-3.74 + 11.5i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (9.61 - 6.98i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (-0.386 - 0.280i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 - 14.0T + 89T^{2} \) |
| 97 | \( 1 + (-3.11 + 2.26i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.349084797060711849331006710777, −8.232536942335053732335912581029, −7.60415007779282287776379907250, −6.87293020190511306349495311396, −6.07492657517028155813933230326, −5.11144457356047618869776432519, −4.17886064326297906542976287807, −3.45105743113091844035583278371, −2.09851774678717507718092694447, −1.06160961903689834358303122607,
1.00404273291095060314683518234, 2.23027969612467067069235751664, 3.19638300349737339488723605757, 4.26865529935392571762060899207, 5.41674643794132184894522623730, 5.78201663957097057373746751879, 6.66444059200196410335974378192, 7.81537497923212136807791334144, 8.434054436621854978521008959614, 9.142723523130637532351121321467