| L(s) = 1 | + (−0.809 − 0.587i)5-s + (−1.24 + 3.84i)7-s + (0.375 − 3.29i)11-s + (0.139 − 0.101i)13-s + (0.864 + 0.627i)17-s + (0.140 + 0.432i)19-s + 0.873·23-s + (0.309 + 0.951i)25-s + (−1.10 + 3.41i)29-s + (−5.02 + 3.65i)31-s + (3.26 − 2.37i)35-s + (−0.440 + 1.35i)37-s + (−1.43 − 4.40i)41-s − 8.59·43-s + (3.75 + 11.5i)47-s + ⋯ |
| L(s) = 1 | + (−0.361 − 0.262i)5-s + (−0.471 + 1.45i)7-s + (0.113 − 0.993i)11-s + (0.0386 − 0.0280i)13-s + (0.209 + 0.152i)17-s + (0.0322 + 0.0991i)19-s + 0.182·23-s + (0.0618 + 0.190i)25-s + (−0.205 + 0.633i)29-s + (−0.903 + 0.656i)31-s + (0.552 − 0.401i)35-s + (−0.0724 + 0.222i)37-s + (−0.223 − 0.688i)41-s − 1.31·43-s + (0.548 + 1.68i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1980 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.899 - 0.436i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1980 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.899 - 0.436i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.5058599068\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.5058599068\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (0.809 + 0.587i)T \) |
| 11 | \( 1 + (-0.375 + 3.29i)T \) |
| good | 7 | \( 1 + (1.24 - 3.84i)T + (-5.66 - 4.11i)T^{2} \) |
| 13 | \( 1 + (-0.139 + 0.101i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (-0.864 - 0.627i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (-0.140 - 0.432i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 - 0.873T + 23T^{2} \) |
| 29 | \( 1 + (1.10 - 3.41i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (5.02 - 3.65i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (0.440 - 1.35i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (1.43 + 4.40i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 + 8.59T + 43T^{2} \) |
| 47 | \( 1 + (-3.75 - 11.5i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (2.31 - 1.67i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (0.0133 - 0.0409i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (4.92 + 3.58i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 + 11.3T + 67T^{2} \) |
| 71 | \( 1 + (9.34 + 6.78i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (-0.581 + 1.79i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (6.76 - 4.91i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (8.92 + 6.48i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 + 11.5T + 89T^{2} \) |
| 97 | \( 1 + (5.38 - 3.91i)T + (29.9 - 92.2i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.145151206863054773422577803339, −8.884773143427413434258957564733, −8.120737439136670867006359168381, −7.16770052457733208134815687776, −6.13497774521148299105493022203, −5.64361622521481428755336375928, −4.75746326061576424962237129125, −3.48626824922824797745958317663, −2.88380137210337912653311538200, −1.53810983340365462821626052344,
0.18056460286297888478528172814, 1.63044149555205977453125139294, 3.01057962840940199893594230493, 3.94836565980103649845546337692, 4.50153525549255519174915848083, 5.65748394741780171995328450016, 6.79197350851331221884007745391, 7.18314995314831318130090735773, 7.83730837825291963600054266816, 8.860826411381365074044283546389