Properties

Label 2-1980-1.1-c1-0-5
Degree $2$
Conductor $1980$
Sign $1$
Analytic cond. $15.8103$
Root an. cond. $3.97622$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 3.64·7-s − 11-s + 3.64·13-s + 1.64·17-s + 2·19-s + 25-s − 3.29·29-s − 1.29·31-s − 3.64·35-s − 1.29·37-s − 3.29·41-s + 0.354·43-s + 3.29·47-s + 6.29·49-s + 12.5·53-s + 55-s + 12.5·59-s + 5.29·61-s − 3.64·65-s + 8·67-s − 12.5·71-s − 2.93·73-s − 3.64·77-s − 4.58·79-s − 4.93·83-s − 1.64·85-s + ⋯
L(s)  = 1  − 0.447·5-s + 1.37·7-s − 0.301·11-s + 1.01·13-s + 0.399·17-s + 0.458·19-s + 0.200·25-s − 0.611·29-s − 0.231·31-s − 0.616·35-s − 0.212·37-s − 0.514·41-s + 0.0540·43-s + 0.480·47-s + 0.898·49-s + 1.72·53-s + 0.134·55-s + 1.63·59-s + 0.677·61-s − 0.452·65-s + 0.977·67-s − 1.49·71-s − 0.343·73-s − 0.415·77-s − 0.515·79-s − 0.541·83-s − 0.178·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1980 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1980 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1980\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 11\)
Sign: $1$
Analytic conductor: \(15.8103\)
Root analytic conductor: \(3.97622\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1980,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.005831331\)
\(L(\frac12)\) \(\approx\) \(2.005831331\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
11 \( 1 + T \)
good7 \( 1 - 3.64T + 7T^{2} \)
13 \( 1 - 3.64T + 13T^{2} \)
17 \( 1 - 1.64T + 17T^{2} \)
19 \( 1 - 2T + 19T^{2} \)
23 \( 1 + 23T^{2} \)
29 \( 1 + 3.29T + 29T^{2} \)
31 \( 1 + 1.29T + 31T^{2} \)
37 \( 1 + 1.29T + 37T^{2} \)
41 \( 1 + 3.29T + 41T^{2} \)
43 \( 1 - 0.354T + 43T^{2} \)
47 \( 1 - 3.29T + 47T^{2} \)
53 \( 1 - 12.5T + 53T^{2} \)
59 \( 1 - 12.5T + 59T^{2} \)
61 \( 1 - 5.29T + 61T^{2} \)
67 \( 1 - 8T + 67T^{2} \)
71 \( 1 + 12.5T + 71T^{2} \)
73 \( 1 + 2.93T + 73T^{2} \)
79 \( 1 + 4.58T + 79T^{2} \)
83 \( 1 + 4.93T + 83T^{2} \)
89 \( 1 - 6T + 89T^{2} \)
97 \( 1 - 8.58T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.883597157683855596895771824359, −8.414208185134297247405459564916, −7.66653544780061977518956140324, −7.02574455051330314678956452630, −5.79430249420584356701857850004, −5.18605571380262338551642717283, −4.23136545445714534525683944742, −3.42916454373224746581135804257, −2.10907696129510740237839293793, −1.01152591419051378837832409053, 1.01152591419051378837832409053, 2.10907696129510740237839293793, 3.42916454373224746581135804257, 4.23136545445714534525683944742, 5.18605571380262338551642717283, 5.79430249420584356701857850004, 7.02574455051330314678956452630, 7.66653544780061977518956140324, 8.414208185134297247405459564916, 8.883597157683855596895771824359

Graph of the $Z$-function along the critical line