L(s) = 1 | + (0.309 − 0.951i)2-s + (−0.809 − 0.587i)4-s + (1.11 + 3.44i)5-s + (3.11 + 2.26i)7-s + (−0.809 + 0.587i)8-s + 3.61·10-s + (−3.23 + 0.726i)11-s + (2 − 6.15i)13-s + (3.11 − 2.26i)14-s + (0.309 + 0.951i)16-s + (−1 − 3.07i)17-s + (−1.61 + 1.17i)19-s + (1.11 − 3.44i)20-s + (−0.309 + 3.30i)22-s + 2.76·23-s + ⋯ |
L(s) = 1 | + (0.218 − 0.672i)2-s + (−0.404 − 0.293i)4-s + (0.499 + 1.53i)5-s + (1.17 + 0.856i)7-s + (−0.286 + 0.207i)8-s + 1.14·10-s + (−0.975 + 0.219i)11-s + (0.554 − 1.70i)13-s + (0.833 − 0.605i)14-s + (0.0772 + 0.237i)16-s + (−0.242 − 0.746i)17-s + (−0.371 + 0.269i)19-s + (0.249 − 0.769i)20-s + (−0.0658 + 0.704i)22-s + 0.576·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 198 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.998 + 0.0475i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 198 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.998 + 0.0475i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.43092 - 0.0340250i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.43092 - 0.0340250i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.309 + 0.951i)T \) |
| 3 | \( 1 \) |
| 11 | \( 1 + (3.23 - 0.726i)T \) |
good | 5 | \( 1 + (-1.11 - 3.44i)T + (-4.04 + 2.93i)T^{2} \) |
| 7 | \( 1 + (-3.11 - 2.26i)T + (2.16 + 6.65i)T^{2} \) |
| 13 | \( 1 + (-2 + 6.15i)T + (-10.5 - 7.64i)T^{2} \) |
| 17 | \( 1 + (1 + 3.07i)T + (-13.7 + 9.99i)T^{2} \) |
| 19 | \( 1 + (1.61 - 1.17i)T + (5.87 - 18.0i)T^{2} \) |
| 23 | \( 1 - 2.76T + 23T^{2} \) |
| 29 | \( 1 + (0.309 + 0.224i)T + (8.96 + 27.5i)T^{2} \) |
| 31 | \( 1 + (-0.0450 + 0.138i)T + (-25.0 - 18.2i)T^{2} \) |
| 37 | \( 1 + (3 + 2.17i)T + (11.4 + 35.1i)T^{2} \) |
| 41 | \( 1 + (-5.47 + 3.97i)T + (12.6 - 38.9i)T^{2} \) |
| 43 | \( 1 + 43T^{2} \) |
| 47 | \( 1 + (3.85 - 2.80i)T + (14.5 - 44.6i)T^{2} \) |
| 53 | \( 1 + (-2.89 + 8.92i)T + (-42.8 - 31.1i)T^{2} \) |
| 59 | \( 1 + (9.97 + 7.24i)T + (18.2 + 56.1i)T^{2} \) |
| 61 | \( 1 + (-0.854 - 2.62i)T + (-49.3 + 35.8i)T^{2} \) |
| 67 | \( 1 + 10.9T + 67T^{2} \) |
| 71 | \( 1 + (0.236 + 0.726i)T + (-57.4 + 41.7i)T^{2} \) |
| 73 | \( 1 + (-1.92 - 1.40i)T + (22.5 + 69.4i)T^{2} \) |
| 79 | \( 1 + (2.20 - 6.79i)T + (-63.9 - 46.4i)T^{2} \) |
| 83 | \( 1 + (-2.40 - 7.41i)T + (-67.1 + 48.7i)T^{2} \) |
| 89 | \( 1 + 6.18T + 89T^{2} \) |
| 97 | \( 1 + (2.20 - 6.79i)T + (-78.4 - 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.43910069691581540292117441542, −11.14756528696380628743561584471, −10.80692829784314327378595534410, −9.888400903693581023387189339465, −8.475433399714909098117673040641, −7.46104389249162055933575148093, −5.92644019050461093026748684200, −5.08747145538125390610482919191, −3.13821936892743755580842546584, −2.24743704848796746777231755689,
1.53576062301919089794728346888, 4.31800875702691473113706808648, 4.85594093046387365551415191371, 6.09986302353272208305694498552, 7.50145453927126694687091429115, 8.505737784214765755569863843525, 9.097836286281403845699204782829, 10.54853828869623799796987945448, 11.60601211684589455213068036080, 12.81711256754345927920658498578