L(s) = 1 | + (0.831 + 1.14i)2-s + (−0.618 + 1.90i)4-s + (−6.27 − 4.56i)5-s + (−2.67 − 0.869i)7-s + (−2.68 + 0.874i)8-s − 10.9i·10-s + (−2.55 − 10.6i)11-s + (−5.81 − 8.00i)13-s + (−1.23 − 3.78i)14-s + (−3.23 − 2.35i)16-s + (4.12 − 5.67i)17-s + (−16.8 + 5.46i)19-s + (12.5 − 9.12i)20-s + (10.1 − 11.8i)22-s − 17.7·23-s + ⋯ |
L(s) = 1 | + (0.415 + 0.572i)2-s + (−0.154 + 0.475i)4-s + (−1.25 − 0.912i)5-s + (−0.382 − 0.124i)7-s + (−0.336 + 0.109i)8-s − 1.09i·10-s + (−0.232 − 0.972i)11-s + (−0.447 − 0.615i)13-s + (−0.0878 − 0.270i)14-s + (−0.202 − 0.146i)16-s + (0.242 − 0.333i)17-s + (−0.885 + 0.287i)19-s + (0.627 − 0.456i)20-s + (0.459 − 0.537i)22-s − 0.772·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 198 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.318 + 0.947i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 198 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.318 + 0.947i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.366874 - 0.510502i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.366874 - 0.510502i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.831 - 1.14i)T \) |
| 3 | \( 1 \) |
| 11 | \( 1 + (2.55 + 10.6i)T \) |
good | 5 | \( 1 + (6.27 + 4.56i)T + (7.72 + 23.7i)T^{2} \) |
| 7 | \( 1 + (2.67 + 0.869i)T + (39.6 + 28.8i)T^{2} \) |
| 13 | \( 1 + (5.81 + 8.00i)T + (-52.2 + 160. i)T^{2} \) |
| 17 | \( 1 + (-4.12 + 5.67i)T + (-89.3 - 274. i)T^{2} \) |
| 19 | \( 1 + (16.8 - 5.46i)T + (292. - 212. i)T^{2} \) |
| 23 | \( 1 + 17.7T + 529T^{2} \) |
| 29 | \( 1 + (-29.6 - 9.62i)T + (680. + 494. i)T^{2} \) |
| 31 | \( 1 + (-9.04 + 6.56i)T + (296. - 913. i)T^{2} \) |
| 37 | \( 1 + (-6.14 + 18.9i)T + (-1.10e3 - 804. i)T^{2} \) |
| 41 | \( 1 + (76.0 - 24.7i)T + (1.35e3 - 988. i)T^{2} \) |
| 43 | \( 1 - 20.7iT - 1.84e3T^{2} \) |
| 47 | \( 1 + (-8.30 - 25.5i)T + (-1.78e3 + 1.29e3i)T^{2} \) |
| 53 | \( 1 + (-52.0 + 37.8i)T + (868. - 2.67e3i)T^{2} \) |
| 59 | \( 1 + (-11.0 + 34.1i)T + (-2.81e3 - 2.04e3i)T^{2} \) |
| 61 | \( 1 + (-30.4 + 41.9i)T + (-1.14e3 - 3.53e3i)T^{2} \) |
| 67 | \( 1 + 17.1T + 4.48e3T^{2} \) |
| 71 | \( 1 + (-25.5 - 18.5i)T + (1.55e3 + 4.79e3i)T^{2} \) |
| 73 | \( 1 + (-2.48 - 0.805i)T + (4.31e3 + 3.13e3i)T^{2} \) |
| 79 | \( 1 + (-47.3 - 65.2i)T + (-1.92e3 + 5.93e3i)T^{2} \) |
| 83 | \( 1 + (31.8 - 43.8i)T + (-2.12e3 - 6.55e3i)T^{2} \) |
| 89 | \( 1 + 85.3T + 7.92e3T^{2} \) |
| 97 | \( 1 + (-12.3 + 8.96i)T + (2.90e3 - 8.94e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.19809584328100459874170536698, −11.25250025728094824925822817736, −9.906857796089877162358100813565, −8.390272655424424568588990827963, −8.132172386158185547044409693881, −6.78898934084965325176892096367, −5.47643389236039385278166836679, −4.38031902227985996843297287327, −3.26254205093931740021131321855, −0.30440852266994923356007442354,
2.39631481174491603943336745430, 3.70846848496909281477896610591, 4.68175411743877936945601050057, 6.44120353184729290781907907730, 7.30979772544018959301699294562, 8.526753252284413056569146289168, 9.987601968477039756798217818157, 10.61700676975894846654612708953, 11.89379912846313380704734599575, 12.12693893764380383695438544127