L(s) = 1 | + (−0.831 − 1.14i)2-s + (−0.618 + 1.90i)4-s + (2.42 + 1.76i)5-s + (−3.70 − 1.20i)7-s + (2.68 − 0.874i)8-s − 4.23i·10-s + (10.2 − 3.96i)11-s + (14.4 + 19.8i)13-s + (1.70 + 5.23i)14-s + (−3.23 − 2.35i)16-s + (−3.79 + 5.22i)17-s + (14.9 − 4.84i)19-s + (−4.85 + 3.52i)20-s + (−13.0 − 8.44i)22-s + 30.3·23-s + ⋯ |
L(s) = 1 | + (−0.415 − 0.572i)2-s + (−0.154 + 0.475i)4-s + (0.485 + 0.352i)5-s + (−0.529 − 0.171i)7-s + (0.336 − 0.109i)8-s − 0.423i·10-s + (0.932 − 0.360i)11-s + (1.11 + 1.52i)13-s + (0.121 + 0.374i)14-s + (−0.202 − 0.146i)16-s + (−0.223 + 0.307i)17-s + (0.784 − 0.255i)19-s + (−0.242 + 0.176i)20-s + (−0.593 − 0.383i)22-s + 1.31·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 198 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.981 + 0.189i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 198 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.981 + 0.189i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.34622 - 0.128474i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.34622 - 0.128474i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.831 + 1.14i)T \) |
| 3 | \( 1 \) |
| 11 | \( 1 + (-10.2 + 3.96i)T \) |
good | 5 | \( 1 + (-2.42 - 1.76i)T + (7.72 + 23.7i)T^{2} \) |
| 7 | \( 1 + (3.70 + 1.20i)T + (39.6 + 28.8i)T^{2} \) |
| 13 | \( 1 + (-14.4 - 19.8i)T + (-52.2 + 160. i)T^{2} \) |
| 17 | \( 1 + (3.79 - 5.22i)T + (-89.3 - 274. i)T^{2} \) |
| 19 | \( 1 + (-14.9 + 4.84i)T + (292. - 212. i)T^{2} \) |
| 23 | \( 1 - 30.3T + 529T^{2} \) |
| 29 | \( 1 + (-14.2 - 4.63i)T + (680. + 494. i)T^{2} \) |
| 31 | \( 1 + (-21.4 + 15.5i)T + (296. - 913. i)T^{2} \) |
| 37 | \( 1 + (1.29 - 3.97i)T + (-1.10e3 - 804. i)T^{2} \) |
| 41 | \( 1 + (41.2 - 13.3i)T + (1.35e3 - 988. i)T^{2} \) |
| 43 | \( 1 - 56.0iT - 1.84e3T^{2} \) |
| 47 | \( 1 + (9.34 + 28.7i)T + (-1.78e3 + 1.29e3i)T^{2} \) |
| 53 | \( 1 + (-42.1 + 30.6i)T + (868. - 2.67e3i)T^{2} \) |
| 59 | \( 1 + (29.1 - 89.7i)T + (-2.81e3 - 2.04e3i)T^{2} \) |
| 61 | \( 1 + (54.8 - 75.4i)T + (-1.14e3 - 3.53e3i)T^{2} \) |
| 67 | \( 1 - 54.0T + 4.48e3T^{2} \) |
| 71 | \( 1 + (75.9 + 55.1i)T + (1.55e3 + 4.79e3i)T^{2} \) |
| 73 | \( 1 + (23.3 + 7.58i)T + (4.31e3 + 3.13e3i)T^{2} \) |
| 79 | \( 1 + (45.4 + 62.5i)T + (-1.92e3 + 5.93e3i)T^{2} \) |
| 83 | \( 1 + (-16.8 + 23.1i)T + (-2.12e3 - 6.55e3i)T^{2} \) |
| 89 | \( 1 + 68.2T + 7.92e3T^{2} \) |
| 97 | \( 1 + (29.1 - 21.1i)T + (2.90e3 - 8.94e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.89241163797547414159198602082, −11.30859258022516689615571600760, −10.22086476322472455578082178690, −9.290014585421215323696558242601, −8.584327463768271679272539483026, −6.92857190916432211236297288332, −6.22704395959198910909986929729, −4.32665912029805933151935540931, −3.09210199171147930104393807392, −1.39028910168989221275783012987,
1.14464244695134852258049363373, 3.31848967887623789469324390092, 5.10108524346249990785355114922, 6.06984860932523380894029751189, 7.09493252867973976863704574286, 8.381585302634969102548027485066, 9.225580230416804771892644241622, 10.05955022879208834566119501335, 11.14584509956227597460712908433, 12.43571981905357032616109991608