L(s) = 1 | + (0.809 − 0.587i)2-s + (0.309 − 0.951i)4-s + (−3.11 − 2.26i)5-s + (0.736 − 2.26i)7-s + (−0.309 − 0.951i)8-s − 3.85·10-s + (3.23 − 0.726i)11-s + (−1 + 0.726i)13-s + (−0.736 − 2.26i)14-s + (−0.809 − 0.587i)16-s + (5.23 + 3.80i)17-s + (0.381 + 1.17i)19-s + (−3.11 + 2.26i)20-s + (2.19 − 2.48i)22-s − 1.23·23-s + ⋯ |
L(s) = 1 | + (0.572 − 0.415i)2-s + (0.154 − 0.475i)4-s + (−1.39 − 1.01i)5-s + (0.278 − 0.856i)7-s + (−0.109 − 0.336i)8-s − 1.21·10-s + (0.975 − 0.219i)11-s + (−0.277 + 0.201i)13-s + (−0.196 − 0.605i)14-s + (−0.202 − 0.146i)16-s + (1.26 + 0.922i)17-s + (0.0876 + 0.269i)19-s + (−0.697 + 0.506i)20-s + (0.467 − 0.530i)22-s − 0.257·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 198 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.116 + 0.993i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 198 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.116 + 0.993i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.889927 - 1.00073i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.889927 - 1.00073i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.809 + 0.587i)T \) |
| 3 | \( 1 \) |
| 11 | \( 1 + (-3.23 + 0.726i)T \) |
good | 5 | \( 1 + (3.11 + 2.26i)T + (1.54 + 4.75i)T^{2} \) |
| 7 | \( 1 + (-0.736 + 2.26i)T + (-5.66 - 4.11i)T^{2} \) |
| 13 | \( 1 + (1 - 0.726i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (-5.23 - 3.80i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (-0.381 - 1.17i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 + 1.23T + 23T^{2} \) |
| 29 | \( 1 + (-0.809 + 2.48i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (5.16 - 3.75i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (-3.23 + 9.95i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (0.381 + 1.17i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 - 1.23T + 43T^{2} \) |
| 47 | \( 1 + (-2 - 6.15i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (-2.30 + 1.67i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (0.881 - 2.71i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (-9.09 - 6.60i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 - 4T + 67T^{2} \) |
| 71 | \( 1 + (-2.85 - 2.07i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (-1.33 + 4.11i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (5.11 - 3.71i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (13.2 + 9.59i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 + 1.70T + 89T^{2} \) |
| 97 | \( 1 + (-3.5 + 2.54i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.22633674648987573587004372548, −11.50731742532321626619233793260, −10.53775666741804285871893084490, −9.235859429159395783082511272450, −8.104398258895650137927878650208, −7.21912135647023295774099480307, −5.59990951559869982322633200425, −4.21755485330225947931972780307, −3.75684232007856290983698857449, −1.14018290067349941703985030644,
2.87873170426480198592272856752, 3.95445723247350060552542679705, 5.30875235929324402767889025313, 6.69037171036422832220222722274, 7.49714429107963219216083118002, 8.421658230730484425093525056349, 9.789488535747253379370345228840, 11.27858307603748748503666775767, 11.78958540053274919160008721658, 12.47072194912552914752849513409