L(s) = 1 | + (1.34 + 0.437i)2-s + (1.61 + 1.17i)4-s + (−1.96 − 6.03i)5-s + (5.91 − 8.14i)7-s + (1.66 + 2.28i)8-s − 8.97i·10-s + (−10.7 − 2.43i)11-s + (−1.07 − 0.348i)13-s + (11.5 − 8.36i)14-s + (1.23 + 3.80i)16-s + (18.8 − 6.12i)17-s + (0.867 + 1.19i)19-s + (3.92 − 12.0i)20-s + (−13.3 − 7.96i)22-s + 38.3·23-s + ⋯ |
L(s) = 1 | + (0.672 + 0.218i)2-s + (0.404 + 0.293i)4-s + (−0.392 − 1.20i)5-s + (0.845 − 1.16i)7-s + (0.207 + 0.286i)8-s − 0.897i·10-s + (−0.975 − 0.221i)11-s + (−0.0823 − 0.0267i)13-s + (0.822 − 0.597i)14-s + (0.0772 + 0.237i)16-s + (1.10 − 0.360i)17-s + (0.0456 + 0.0628i)19-s + (0.196 − 0.603i)20-s + (−0.607 − 0.361i)22-s + 1.66·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 198 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.642 + 0.766i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 198 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.642 + 0.766i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.95346 - 0.911976i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.95346 - 0.911976i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.34 - 0.437i)T \) |
| 3 | \( 1 \) |
| 11 | \( 1 + (10.7 + 2.43i)T \) |
good | 5 | \( 1 + (1.96 + 6.03i)T + (-20.2 + 14.6i)T^{2} \) |
| 7 | \( 1 + (-5.91 + 8.14i)T + (-15.1 - 46.6i)T^{2} \) |
| 13 | \( 1 + (1.07 + 0.348i)T + (136. + 99.3i)T^{2} \) |
| 17 | \( 1 + (-18.8 + 6.12i)T + (233. - 169. i)T^{2} \) |
| 19 | \( 1 + (-0.867 - 1.19i)T + (-111. + 343. i)T^{2} \) |
| 23 | \( 1 - 38.3T + 529T^{2} \) |
| 29 | \( 1 + (10.1 - 13.9i)T + (-259. - 799. i)T^{2} \) |
| 31 | \( 1 + (18.5 - 57.1i)T + (-777. - 564. i)T^{2} \) |
| 37 | \( 1 + (19.5 + 14.2i)T + (423. + 1.30e3i)T^{2} \) |
| 41 | \( 1 + (-19.6 - 27.0i)T + (-519. + 1.59e3i)T^{2} \) |
| 43 | \( 1 + 42.3iT - 1.84e3T^{2} \) |
| 47 | \( 1 + (48.3 - 35.0i)T + (682. - 2.10e3i)T^{2} \) |
| 53 | \( 1 + (-7.40 + 22.7i)T + (-2.27e3 - 1.65e3i)T^{2} \) |
| 59 | \( 1 + (-35.0 - 25.4i)T + (1.07e3 + 3.31e3i)T^{2} \) |
| 61 | \( 1 + (97.0 - 31.5i)T + (3.01e3 - 2.18e3i)T^{2} \) |
| 67 | \( 1 - 110.T + 4.48e3T^{2} \) |
| 71 | \( 1 + (10.2 + 31.6i)T + (-4.07e3 + 2.96e3i)T^{2} \) |
| 73 | \( 1 + (26.8 - 37.0i)T + (-1.64e3 - 5.06e3i)T^{2} \) |
| 79 | \( 1 + (-73.0 - 23.7i)T + (5.04e3 + 3.66e3i)T^{2} \) |
| 83 | \( 1 + (-67.1 + 21.8i)T + (5.57e3 - 4.04e3i)T^{2} \) |
| 89 | \( 1 + 53.1T + 7.92e3T^{2} \) |
| 97 | \( 1 + (-33.4 + 102. i)T + (-7.61e3 - 5.53e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.38898684550566059387861573942, −11.22502209647012369110303027267, −10.42187163417204185034447087643, −8.870728901922722364456382663261, −7.88255243750401289020452063931, −7.15307245389746463202049013662, −5.24501607128308132373166754354, −4.81472047213313966370050446939, −3.41080074740274182240111017850, −1.12388018892533822105479584960,
2.25925265337902756113178719022, 3.31283967150493241336836707833, 4.96380178319144670731980347976, 5.89177151010981407302365733931, 7.25837554728198854135993631061, 8.119289252975768953860359833283, 9.624912555644121260591345703441, 10.83486606748005149404066388384, 11.35983699783631489933595029543, 12.31805268189921137311723146556