L(s) = 1 | + (1.34 + 0.437i)2-s + (1.61 + 1.17i)4-s + (1.98 + 6.12i)5-s + (4.81 − 6.63i)7-s + (1.66 + 2.28i)8-s + 9.10i·10-s + (0.195 + 10.9i)11-s + (−8.81 − 2.86i)13-s + (9.37 − 6.81i)14-s + (1.23 + 3.80i)16-s + (3.81 − 1.24i)17-s + (16.9 + 23.3i)19-s + (−3.97 + 12.2i)20-s + (−4.54 + 14.8i)22-s − 5.74·23-s + ⋯ |
L(s) = 1 | + (0.672 + 0.218i)2-s + (0.404 + 0.293i)4-s + (0.397 + 1.22i)5-s + (0.688 − 0.947i)7-s + (0.207 + 0.286i)8-s + 0.910i·10-s + (0.0177 + 0.999i)11-s + (−0.678 − 0.220i)13-s + (0.669 − 0.486i)14-s + (0.0772 + 0.237i)16-s + (0.224 − 0.0729i)17-s + (0.894 + 1.23i)19-s + (−0.198 + 0.612i)20-s + (−0.206 + 0.676i)22-s − 0.249·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 198 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.591 - 0.806i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 198 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.591 - 0.806i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(2.19060 + 1.11035i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.19060 + 1.11035i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.34 - 0.437i)T \) |
| 3 | \( 1 \) |
| 11 | \( 1 + (-0.195 - 10.9i)T \) |
good | 5 | \( 1 + (-1.98 - 6.12i)T + (-20.2 + 14.6i)T^{2} \) |
| 7 | \( 1 + (-4.81 + 6.63i)T + (-15.1 - 46.6i)T^{2} \) |
| 13 | \( 1 + (8.81 + 2.86i)T + (136. + 99.3i)T^{2} \) |
| 17 | \( 1 + (-3.81 + 1.24i)T + (233. - 169. i)T^{2} \) |
| 19 | \( 1 + (-16.9 - 23.3i)T + (-111. + 343. i)T^{2} \) |
| 23 | \( 1 + 5.74T + 529T^{2} \) |
| 29 | \( 1 + (-17.8 + 24.5i)T + (-259. - 799. i)T^{2} \) |
| 31 | \( 1 + (-16.3 + 50.4i)T + (-777. - 564. i)T^{2} \) |
| 37 | \( 1 + (41.2 + 29.9i)T + (423. + 1.30e3i)T^{2} \) |
| 41 | \( 1 + (44.9 + 61.9i)T + (-519. + 1.59e3i)T^{2} \) |
| 43 | \( 1 - 9.29iT - 1.84e3T^{2} \) |
| 47 | \( 1 + (61.9 - 45.0i)T + (682. - 2.10e3i)T^{2} \) |
| 53 | \( 1 + (1.63 - 5.04i)T + (-2.27e3 - 1.65e3i)T^{2} \) |
| 59 | \( 1 + (31.5 + 22.9i)T + (1.07e3 + 3.31e3i)T^{2} \) |
| 61 | \( 1 + (-76.7 + 24.9i)T + (3.01e3 - 2.18e3i)T^{2} \) |
| 67 | \( 1 + 7.38T + 4.48e3T^{2} \) |
| 71 | \( 1 + (34.2 + 105. i)T + (-4.07e3 + 2.96e3i)T^{2} \) |
| 73 | \( 1 + (16.0 - 22.0i)T + (-1.64e3 - 5.06e3i)T^{2} \) |
| 79 | \( 1 + (-41.7 - 13.5i)T + (5.04e3 + 3.66e3i)T^{2} \) |
| 83 | \( 1 + (-13.2 + 4.30i)T + (5.57e3 - 4.04e3i)T^{2} \) |
| 89 | \( 1 - 58.6T + 7.92e3T^{2} \) |
| 97 | \( 1 + (-50.0 + 154. i)T + (-7.61e3 - 5.53e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.38232792066531041730832116431, −11.51007549156951368914730111264, −10.38525710708145921370058717420, −9.874582314943878511332418551214, −7.81203133359677868383763109957, −7.28933133980513005724201880045, −6.17526855481370416816157220563, −4.85640018970569710190278644968, −3.61414492750881039616292682339, −2.11220051463519650064764775306,
1.39949619979340838762736083441, 3.02156470128311486238589775909, 5.06326815462827513278147518966, 5.13438869425292434991685140323, 6.68315207817996879721643267422, 8.353740549442822442139890548210, 8.966203239979594614512858160377, 10.18557589006004689308124305116, 11.60130678216540997395630620416, 12.01542776199634866483596491471