L(s) = 1 | + (−4.93 + 1.12i)2-s + (8.18 + 1.86i)3-s + (15.8 − 7.62i)4-s + (3.18 − 6.62i)5-s − 42.4·6-s + (1.15 − 5.04i)7-s + (−37.8 + 30.2i)8-s + (39.1 + 18.8i)9-s + (−8.27 + 36.2i)10-s + (25.8 − 5.91i)11-s + (143. − 32.8i)12-s + (23.1 + 18.4i)13-s + 26.1i·14-s + (38.4 − 48.2i)15-s + (65.1 − 81.6i)16-s + (7.25 − 15.0i)17-s + ⋯ |
L(s) = 1 | + (−1.74 + 0.397i)2-s + (1.57 + 0.359i)3-s + (1.97 − 0.953i)4-s + (0.285 − 0.592i)5-s − 2.88·6-s + (0.0621 − 0.272i)7-s + (−1.67 + 1.33i)8-s + (1.45 + 0.698i)9-s + (−0.261 + 1.14i)10-s + (0.709 − 0.162i)11-s + (3.46 − 0.789i)12-s + (0.494 + 0.394i)13-s + 0.499i·14-s + (0.662 − 0.830i)15-s + (1.01 − 1.27i)16-s + (0.103 − 0.214i)17-s + ⋯ |
Λ(s)=(=(197s/2ΓC(s)L(s)(0.992−0.121i)Λ(4−s)
Λ(s)=(=(197s/2ΓC(s+3/2)L(s)(0.992−0.121i)Λ(1−s)
Degree: |
2 |
Conductor: |
197
|
Sign: |
0.992−0.121i
|
Analytic conductor: |
11.6233 |
Root analytic conductor: |
3.40930 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ197(6,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 197, ( :3/2), 0.992−0.121i)
|
Particular Values
L(2) |
≈ |
1.49776+0.0912270i |
L(21) |
≈ |
1.49776+0.0912270i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 197 | 1+(−1.20e3+2.48e3i)T |
good | 2 | 1+(4.93−1.12i)T+(7.20−3.47i)T2 |
| 3 | 1+(−8.18−1.86i)T+(24.3+11.7i)T2 |
| 5 | 1+(−3.18+6.62i)T+(−77.9−97.7i)T2 |
| 7 | 1+(−1.15+5.04i)T+(−309.−148.i)T2 |
| 11 | 1+(−25.8+5.91i)T+(1.19e3−577.i)T2 |
| 13 | 1+(−23.1−18.4i)T+(488.+2.14e3i)T2 |
| 17 | 1+(−7.25+15.0i)T+(−3.06e3−3.84e3i)T2 |
| 19 | 1+31.0T+6.85e3T2 |
| 23 | 1+(32.9+144.i)T+(−1.09e4+5.27e3i)T2 |
| 29 | 1+(29.7+130.i)T+(−2.19e4+1.05e4i)T2 |
| 31 | 1+(−159.+36.4i)T+(2.68e4−1.29e4i)T2 |
| 37 | 1+(−221.−278.i)T+(−1.12e4+4.93e4i)T2 |
| 41 | 1+(143.+69.0i)T+(4.29e4+5.38e4i)T2 |
| 43 | 1+(98.5+431.i)T+(−7.16e4+3.44e4i)T2 |
| 47 | 1+(−219.−274.i)T+(−2.31e4+1.01e5i)T2 |
| 53 | 1+(68.0−32.7i)T+(9.28e4−1.16e5i)T2 |
| 59 | 1+(33.1+145.i)T+(−1.85e5+8.91e4i)T2 |
| 61 | 1+(−157.−691.i)T+(−2.04e5+9.84e4i)T2 |
| 67 | 1+(−150.+119.i)T+(6.69e4−2.93e5i)T2 |
| 71 | 1+(437.−907.i)T+(−2.23e5−2.79e5i)T2 |
| 73 | 1+(210.−167.i)T+(8.65e4−3.79e5i)T2 |
| 79 | 1+(247.+514.i)T+(−3.07e5+3.85e5i)T2 |
| 83 | 1−514.T+5.71e5T2 |
| 89 | 1+(485.+110.i)T+(6.35e5+3.05e5i)T2 |
| 97 | 1+(227.+109.i)T+(5.69e5+7.13e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.72454668741035447229818321789, −10.43097515896401252467534085293, −9.699999301225574096509998717335, −8.795507384635870428050639806527, −8.524686411977234450587784809591, −7.44438836776553567463246363619, −6.30204523362256341060305685467, −4.20639443014894254396601111054, −2.46674325980225438445175787331, −1.14784043162500858584377555147,
1.40539188849730914082470022787, 2.46182118980919778434657154491, 3.50440472035969963347307938561, 6.42677085592603641620651229632, 7.43639556328173620258730094000, 8.241231784020657768672553746337, 9.007269124703987559904544977609, 9.719660793677155453050109780603, 10.64563161655910059596888560471, 11.73973628920147073891146824845