L(s) = 1 | + (−2.90 − 0.0465i)2-s + (−0.438 + 0.107i)3-s + (4.41 + 0.141i)4-s + (−1.33 − 9.17i)5-s + (1.27 − 0.291i)6-s + (6.15 − 6.35i)7-s + (−1.21 − 0.0582i)8-s + (−7.79 + 4.06i)9-s + (3.44 + 26.6i)10-s + (15.1 + 7.61i)11-s + (−1.95 + 0.412i)12-s + (−17.2 − 7.29i)13-s + (−18.1 + 18.1i)14-s + (1.57 + 3.88i)15-s + (−14.1 − 0.906i)16-s + (12.9 − 8.73i)17-s + ⋯ |
L(s) = 1 | + (−1.45 − 0.0232i)2-s + (−0.146 + 0.0358i)3-s + (1.10 + 0.0354i)4-s + (−0.266 − 1.83i)5-s + (0.213 − 0.0486i)6-s + (0.878 − 0.907i)7-s + (−0.151 − 0.00728i)8-s + (−0.866 + 0.452i)9-s + (0.344 + 2.66i)10-s + (1.38 + 0.692i)11-s + (−0.162 + 0.0344i)12-s + (−1.32 − 0.561i)13-s + (−1.29 + 1.29i)14-s + (0.104 + 0.258i)15-s + (−0.882 − 0.0566i)16-s + (0.762 − 0.513i)17-s + ⋯ |
Λ(s)=(=(197s/2ΓC(s)L(s)(−0.911+0.410i)Λ(3−s)
Λ(s)=(=(197s/2ΓC(s+1)L(s)(−0.911+0.410i)Λ(1−s)
Degree: |
2 |
Conductor: |
197
|
Sign: |
−0.911+0.410i
|
Analytic conductor: |
5.36786 |
Root analytic conductor: |
2.31686 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ197(2,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 197, ( :1), −0.911+0.410i)
|
Particular Values
L(23) |
≈ |
0.100545−0.467656i |
L(21) |
≈ |
0.100545−0.467656i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 197 | 1+(−77.8+180.i)T |
good | 2 | 1+(2.90+0.0465i)T+(3.99+0.128i)T2 |
| 3 | 1+(0.438−0.107i)T+(7.97−4.16i)T2 |
| 5 | 1+(1.33+9.17i)T+(−23.9+7.11i)T2 |
| 7 | 1+(−6.15+6.35i)T+(−1.57−48.9i)T2 |
| 11 | 1+(−15.1−7.61i)T+(72.3+96.9i)T2 |
| 13 | 1+(17.2+7.29i)T+(117.+121.i)T2 |
| 17 | 1+(−12.9+8.73i)T+(108.−267.i)T2 |
| 19 | 1+(−4.74+3.78i)T+(80.3−351.i)T2 |
| 23 | 1+(−6.08+16.5i)T+(−402.−342.i)T2 |
| 29 | 1+(33.2+21.6i)T+(340.+769.i)T2 |
| 31 | 1+(19.0−23.1i)T+(−183.−943.i)T2 |
| 37 | 1+(50.1−3.21i)T+(1.35e3−175.i)T2 |
| 41 | 1+(−8.45+43.4i)T+(−1.55e3−630.i)T2 |
| 43 | 1+(−12.7−38.4i)T+(−1.48e3+1.10e3i)T2 |
| 47 | 1+(−12.8−22.8i)T+(−1.14e3+1.88e3i)T2 |
| 53 | 1+(−9.32−21.0i)T+(−1.88e3+2.07e3i)T2 |
| 59 | 1+(60.4+7.79i)T+(3.36e3+882.i)T2 |
| 61 | 1+(4.06+6.70i)T+(−1.72e3+3.29e3i)T2 |
| 67 | 1+(−38.0−10.6i)T+(3.83e3+2.32e3i)T2 |
| 71 | 1+(34.9+10.9i)T+(4.13e3+2.88e3i)T2 |
| 73 | 1+(33.6+29.5i)T+(681.+5.28e3i)T2 |
| 79 | 1+(−9.25+63.7i)T+(−5.98e3−1.77e3i)T2 |
| 83 | 1+(−24.6−19.6i)T+(1.53e3+6.71e3i)T2 |
| 89 | 1+(−55.7−67.6i)T+(−1.51e3+7.77e3i)T2 |
| 97 | 1+(−9.92−37.8i)T+(−8.19e3+4.61e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.75185922683394518536736989327, −10.67796000847605185933104874093, −9.525763852231340130551574801297, −8.938178948699795023411157760943, −7.913733930292503413162390412781, −7.34552642661217432038368299151, −5.21726181063776218413809998886, −4.42312937803580897615095806133, −1.62996000947607112229369180198, −0.46305368374877214203514772884,
1.98518867814011711574755662911, 3.46375942404978758136864825325, 5.73289790247313947082321444029, 6.87467405928019205133674872836, 7.66850274690673118157576118306, 8.810716104780362523741008199417, 9.583877002847192271971100655812, 10.73235882748992247167608193418, 11.56957712675361999912912459169, 11.83515950567142780942179151131