L(s) = 1 | + (−4.27 − 0.274i)2-s + (−1.17 + 1.68i)3-s + (10.2 + 1.32i)4-s + (4.43 − 2.88i)5-s + (5.49 − 6.89i)6-s + (4.20 − 0.270i)7-s + (−9.99 − 1.94i)8-s + (7.86 + 21.3i)9-s + (−19.7 + 11.1i)10-s + (−0.707 + 2.38i)11-s + (−14.3 + 15.7i)12-s + (1.85 − 57.9i)13-s − 18.0·14-s + (−0.348 + 10.8i)15-s + (−38.0 − 9.98i)16-s + (−41.5 − 40.2i)17-s + ⋯ |
L(s) = 1 | + (−1.51 − 0.0971i)2-s + (−0.226 + 0.324i)3-s + (1.28 + 0.165i)4-s + (0.396 − 0.258i)5-s + (0.373 − 0.468i)6-s + (0.227 − 0.0145i)7-s + (−0.441 − 0.0860i)8-s + (0.291 + 0.791i)9-s + (−0.625 + 0.352i)10-s + (−0.0194 + 0.0653i)11-s + (−0.345 + 0.379i)12-s + (0.0396 − 1.23i)13-s − 0.345·14-s + (−0.00600 + 0.187i)15-s + (−0.594 − 0.155i)16-s + (−0.592 − 0.573i)17-s + ⋯ |
Λ(s)=(=(197s/2ΓC(s)L(s)(0.974−0.223i)Λ(4−s)
Λ(s)=(=(197s/2ΓC(s+3/2)L(s)(0.974−0.223i)Λ(1−s)
Degree: |
2 |
Conductor: |
197
|
Sign: |
0.974−0.223i
|
Analytic conductor: |
11.6233 |
Root analytic conductor: |
3.40930 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ197(16,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 197, ( :3/2), 0.974−0.223i)
|
Particular Values
L(2) |
≈ |
0.802365+0.0908597i |
L(21) |
≈ |
0.802365+0.0908597i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 197 | 1+(−817.+2.64e3i)T |
good | 2 | 1+(4.27+0.274i)T+(7.93+1.02i)T2 |
| 3 | 1+(1.17−1.68i)T+(−9.32−25.3i)T2 |
| 5 | 1+(−4.43+2.88i)T+(50.5−114.i)T2 |
| 7 | 1+(−4.20+0.270i)T+(340.−43.8i)T2 |
| 11 | 1+(0.707−2.38i)T+(−1.11e3−726.i)T2 |
| 13 | 1+(−1.85+57.9i)T+(−2.19e3−140.i)T2 |
| 17 | 1+(41.5+40.2i)T+(157.+4.91e3i)T2 |
| 19 | 1+(−12.5−6.04i)T+(4.27e3+5.36e3i)T2 |
| 23 | 1+(−22.0−136.i)T+(−1.15e4+3.83e3i)T2 |
| 29 | 1+(−161.+178.i)T+(−2.34e3−2.42e4i)T2 |
| 31 | 1+(−78.5+31.8i)T+(2.14e4−2.07e4i)T2 |
| 37 | 1+(−426.+111.i)T+(4.41e4−2.48e4i)T2 |
| 41 | 1+(−240.−232.i)T+(2.20e3+6.88e4i)T2 |
| 43 | 1+(−83.7+282.i)T+(−6.66e4−4.33e4i)T2 |
| 47 | 1+(−229.−439.i)T+(−5.93e4+8.51e4i)T2 |
| 53 | 1+(−11.9−123.i)T+(−1.46e5+2.84e4i)T2 |
| 59 | 1+(−433.−244.i)T+(1.06e5+1.75e5i)T2 |
| 61 | 1+(−206.−295.i)T+(−7.83e4+2.13e5i)T2 |
| 67 | 1+(391.+749.i)T+(−1.72e5+2.46e5i)T2 |
| 71 | 1+(−228.−621.i)T+(−2.72e5+2.32e5i)T2 |
| 73 | 1+(−489.+128.i)T+(3.38e5−1.90e5i)T2 |
| 79 | 1+(−310.−202.i)T+(1.99e5+4.50e5i)T2 |
| 83 | 1+(−1.14e3+552.i)T+(3.56e5−4.47e5i)T2 |
| 89 | 1+(901.+364.i)T+(5.06e5+4.90e5i)T2 |
| 97 | 1+(−373.+616.i)T+(−4.22e5−8.09e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.52046738347322849901216004540, −10.85585576275673326449153928310, −9.908232074619482298580693028540, −9.331189084350766824018526110092, −8.034389311108303513648236619440, −7.49633825190118363652479689957, −5.84546450144389826597058371097, −4.61832492849827091942251754460, −2.44812261250952228040452896458, −0.931401746792171683583577768046,
0.862602385501125397579068821868, 2.21488236949949676131726119787, 4.37548039908337190100078721356, 6.40605689454880138652231015418, 6.81225765851545200443870099674, 8.172525483773965715713445406346, 9.027185217073459654108432155846, 9.863157556435448077290395058598, 10.79596774457386616771343218377, 11.68535037531631130016237153599