L(s) = 1 | − 28.5·2-s − 17.8·3-s + 303.·4-s − 2.27e3·5-s + 510.·6-s + 4.44e3·7-s + 5.94e3·8-s − 1.93e4·9-s + 6.50e4·10-s + 8.30e4·11-s − 5.43e3·12-s + 1.87e5·13-s − 1.27e5·14-s + 4.07e4·15-s − 3.25e5·16-s + 6.67e5·17-s + 5.53e5·18-s + 4.11e5·19-s − 6.91e5·20-s − 7.95e4·21-s − 2.37e6·22-s − 7.75e5·23-s − 1.06e5·24-s + 3.23e6·25-s − 5.36e6·26-s + 6.98e5·27-s + 1.35e6·28-s + ⋯ |
L(s) = 1 | − 1.26·2-s − 0.127·3-s + 0.593·4-s − 1.62·5-s + 0.160·6-s + 0.700·7-s + 0.513·8-s − 0.983·9-s + 2.05·10-s + 1.71·11-s − 0.0755·12-s + 1.82·13-s − 0.884·14-s + 0.207·15-s − 1.24·16-s + 1.93·17-s + 1.24·18-s + 0.724·19-s − 0.966·20-s − 0.0892·21-s − 2.15·22-s − 0.577·23-s − 0.0654·24-s + 1.65·25-s − 2.30·26-s + 0.252·27-s + 0.415·28-s + ⋯ |
Λ(s)=(=(197s/2ΓC(s)L(s)Λ(10−s)
Λ(s)=(=(197s/2ΓC(s+9/2)L(s)Λ(1−s)
Particular Values
L(5) |
≈ |
1.086630069 |
L(21) |
≈ |
1.086630069 |
L(211) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 197 | 1−1.50e9T |
good | 2 | 1+28.5T+512T2 |
| 3 | 1+17.8T+1.96e4T2 |
| 5 | 1+2.27e3T+1.95e6T2 |
| 7 | 1−4.44e3T+4.03e7T2 |
| 11 | 1−8.30e4T+2.35e9T2 |
| 13 | 1−1.87e5T+1.06e10T2 |
| 17 | 1−6.67e5T+1.18e11T2 |
| 19 | 1−4.11e5T+3.22e11T2 |
| 23 | 1+7.75e5T+1.80e12T2 |
| 29 | 1+3.43e6T+1.45e13T2 |
| 31 | 1−8.79e6T+2.64e13T2 |
| 37 | 1+8.14e5T+1.29e14T2 |
| 41 | 1−4.73e6T+3.27e14T2 |
| 43 | 1−3.02e7T+5.02e14T2 |
| 47 | 1−2.02e7T+1.11e15T2 |
| 53 | 1+3.68e7T+3.29e15T2 |
| 59 | 1−1.23e8T+8.66e15T2 |
| 61 | 1−9.31e7T+1.16e16T2 |
| 67 | 1−3.56e7T+2.72e16T2 |
| 71 | 1−4.86e7T+4.58e16T2 |
| 73 | 1+1.24e8T+5.88e16T2 |
| 79 | 1+1.55e8T+1.19e17T2 |
| 83 | 1+6.28e8T+1.86e17T2 |
| 89 | 1+1.00e8T+3.50e17T2 |
| 97 | 1+1.05e9T+7.60e17T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.05485799354854337566997207586, −9.658112958623149784499351888057, −8.488549708611254426710376498850, −8.232093219561504759219735705175, −7.24026632112568866365621543623, −5.86570836986732187889687085464, −4.21819392318863602708663629787, −3.42444842162520505846402605313, −1.23941678130265676368181864720, −0.77043531220448362747622950414,
0.77043531220448362747622950414, 1.23941678130265676368181864720, 3.42444842162520505846402605313, 4.21819392318863602708663629787, 5.86570836986732187889687085464, 7.24026632112568866365621543623, 8.232093219561504759219735705175, 8.488549708611254426710376498850, 9.658112958623149784499351888057, 11.05485799354854337566997207586