L(s) = 1 | − 145.·2-s − 2.02e3·3-s + 1.28e4·4-s − 1.01e4·5-s + 2.93e5·6-s + 3.45e5·7-s − 6.80e5·8-s + 2.50e6·9-s + 1.47e6·10-s + 1.29e6·11-s − 2.60e7·12-s − 2.93e7·13-s − 5.02e7·14-s + 2.05e7·15-s − 6.76e6·16-s − 7.66e7·17-s − 3.63e8·18-s + 1.13e8·19-s − 1.30e8·20-s − 7.00e8·21-s − 1.87e8·22-s − 9.76e8·23-s + 1.37e9·24-s − 1.11e9·25-s + 4.25e9·26-s − 1.84e9·27-s + 4.45e9·28-s + ⋯ |
L(s) = 1 | − 1.60·2-s − 1.60·3-s + 1.57·4-s − 0.290·5-s + 2.57·6-s + 1.11·7-s − 0.917·8-s + 1.57·9-s + 0.466·10-s + 0.220·11-s − 2.52·12-s − 1.68·13-s − 1.78·14-s + 0.466·15-s − 0.100·16-s − 0.770·17-s − 2.52·18-s + 0.555·19-s − 0.457·20-s − 1.78·21-s − 0.353·22-s − 1.37·23-s + 1.47·24-s − 0.915·25-s + 2.70·26-s − 0.917·27-s + 1.74·28-s + ⋯ |
Λ(s)=(=(197s/2ΓC(s)L(s)Λ(14−s)
Λ(s)=(=(197s/2ΓC(s+13/2)L(s)Λ(1−s)
Particular Values
L(7) |
≈ |
0.07668838194 |
L(21) |
≈ |
0.07668838194 |
L(215) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 197 | 1−5.84e13T |
good | 2 | 1+145.T+8.19e3T2 |
| 3 | 1+2.02e3T+1.59e6T2 |
| 5 | 1+1.01e4T+1.22e9T2 |
| 7 | 1−3.45e5T+9.68e10T2 |
| 11 | 1−1.29e6T+3.45e13T2 |
| 13 | 1+2.93e7T+3.02e14T2 |
| 17 | 1+7.66e7T+9.90e15T2 |
| 19 | 1−1.13e8T+4.20e16T2 |
| 23 | 1+9.76e8T+5.04e17T2 |
| 29 | 1−4.14e9T+1.02e19T2 |
| 31 | 1+5.83e9T+2.44e19T2 |
| 37 | 1−3.87e9T+2.43e20T2 |
| 41 | 1+3.31e10T+9.25e20T2 |
| 43 | 1+4.34e10T+1.71e21T2 |
| 47 | 1−1.16e11T+5.46e21T2 |
| 53 | 1−3.23e10T+2.60e22T2 |
| 59 | 1+4.58e11T+1.04e23T2 |
| 61 | 1+7.04e11T+1.61e23T2 |
| 67 | 1−7.66e11T+5.48e23T2 |
| 71 | 1+1.10e12T+1.16e24T2 |
| 73 | 1−2.36e12T+1.67e24T2 |
| 79 | 1−7.79e11T+4.66e24T2 |
| 83 | 1+6.47e11T+8.87e24T2 |
| 89 | 1−1.00e12T+2.19e25T2 |
| 97 | 1−1.52e13T+6.73e25T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.26185144741292670980411419279, −9.387721139966086537224948162031, −8.083485074107388433836465787506, −7.39351013308023232175737017808, −6.47336620009903149360724138120, −5.21557589687898099310241384254, −4.40417537251106014500315838701, −2.17992291487395160363956825499, −1.32949828037724494854108753722, −0.17334210609360390726615418409,
0.17334210609360390726615418409, 1.32949828037724494854108753722, 2.17992291487395160363956825499, 4.40417537251106014500315838701, 5.21557589687898099310241384254, 6.47336620009903149360724138120, 7.39351013308023232175737017808, 8.083485074107388433836465787506, 9.387721139966086537224948162031, 10.26185144741292670980411419279