L(s) = 1 | + (1.32 + 0.209i)2-s + (0.752 + 0.244i)4-s + (0.891 − 0.453i)7-s + (−0.249 − 0.127i)8-s + (−0.587 − 0.809i)9-s + (0.913 − 0.406i)11-s + (1.27 − 0.413i)14-s + (−0.942 − 0.684i)16-s + (−0.607 − 1.19i)18-s + (1.29 − 0.346i)22-s + (0.294 + 0.294i)23-s + (0.781 − 0.123i)28-s + (−0.251 + 0.773i)29-s + (−0.904 − 0.904i)32-s + (−0.244 − 0.752i)36-s + (0.674 + 1.32i)37-s + ⋯ |
L(s) = 1 | + (1.32 + 0.209i)2-s + (0.752 + 0.244i)4-s + (0.891 − 0.453i)7-s + (−0.249 − 0.127i)8-s + (−0.587 − 0.809i)9-s + (0.913 − 0.406i)11-s + (1.27 − 0.413i)14-s + (−0.942 − 0.684i)16-s + (−0.607 − 1.19i)18-s + (1.29 − 0.346i)22-s + (0.294 + 0.294i)23-s + (0.781 − 0.123i)28-s + (−0.251 + 0.773i)29-s + (−0.904 − 0.904i)32-s + (−0.244 − 0.752i)36-s + (0.674 + 1.32i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.948 + 0.317i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.948 + 0.317i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.303221501\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.303221501\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 7 | \( 1 + (-0.891 + 0.453i)T \) |
| 11 | \( 1 + (-0.913 + 0.406i)T \) |
good | 2 | \( 1 + (-1.32 - 0.209i)T + (0.951 + 0.309i)T^{2} \) |
| 3 | \( 1 + (0.587 + 0.809i)T^{2} \) |
| 13 | \( 1 + (0.951 + 0.309i)T^{2} \) |
| 17 | \( 1 + (0.951 - 0.309i)T^{2} \) |
| 19 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 23 | \( 1 + (-0.294 - 0.294i)T + iT^{2} \) |
| 29 | \( 1 + (0.251 - 0.773i)T + (-0.809 - 0.587i)T^{2} \) |
| 31 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 37 | \( 1 + (-0.674 - 1.32i)T + (-0.587 + 0.809i)T^{2} \) |
| 41 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 43 | \( 1 + (1.29 - 1.29i)T - iT^{2} \) |
| 47 | \( 1 + (-0.587 - 0.809i)T^{2} \) |
| 53 | \( 1 + (-1.16 - 0.183i)T + (0.951 + 0.309i)T^{2} \) |
| 59 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 61 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 67 | \( 1 + (1.40 - 1.40i)T - iT^{2} \) |
| 71 | \( 1 + (1.47 + 1.07i)T + (0.309 + 0.951i)T^{2} \) |
| 73 | \( 1 + (0.587 - 0.809i)T^{2} \) |
| 79 | \( 1 + (-1.60 + 1.16i)T + (0.309 - 0.951i)T^{2} \) |
| 83 | \( 1 + (-0.951 + 0.309i)T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + (0.951 + 0.309i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.172263317052385840239946581904, −8.634918276194467872628432186323, −7.57635243915129198563799976739, −6.65637399713930571704934578997, −6.10547678393937115464829896183, −5.21483692702187133104617914781, −4.46759561518035987751787027542, −3.66246494407851001405625318380, −2.93007799161321929532019701686, −1.29606814374758239503916309806,
1.88416072870360442121743020042, 2.62687064081789340760078182198, 3.82241802135729436066776292237, 4.54137732660491521668722816816, 5.30438917104278109051575960758, 5.87715777059928493535501712372, 6.86347496148800268100799390752, 7.85254941200406929769063500125, 8.665449609887634295505175043766, 9.271548906256412708496023688371