L(s) = 1 | + (1.93 + 0.306i)2-s + (2.68 + 0.873i)4-s + (−0.891 + 0.453i)7-s + (3.18 + 1.62i)8-s + (−0.587 − 0.809i)9-s + (−0.104 + 0.994i)11-s + (−1.86 + 0.604i)14-s + (3.36 + 2.44i)16-s + (−0.888 − 1.74i)18-s + (−0.506 + 1.88i)22-s + (−1.05 − 1.05i)23-s + (−2.79 + 0.442i)28-s + (0.614 − 1.89i)29-s + (3.23 + 3.23i)32-s + (−0.873 − 2.68i)36-s + (−0.188 − 0.370i)37-s + ⋯ |
L(s) = 1 | + (1.93 + 0.306i)2-s + (2.68 + 0.873i)4-s + (−0.891 + 0.453i)7-s + (3.18 + 1.62i)8-s + (−0.587 − 0.809i)9-s + (−0.104 + 0.994i)11-s + (−1.86 + 0.604i)14-s + (3.36 + 2.44i)16-s + (−0.888 − 1.74i)18-s + (−0.506 + 1.88i)22-s + (−1.05 − 1.05i)23-s + (−2.79 + 0.442i)28-s + (0.614 − 1.89i)29-s + (3.23 + 3.23i)32-s + (−0.873 − 2.68i)36-s + (−0.188 − 0.370i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.748 - 0.662i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.748 - 0.662i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(3.331841129\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.331841129\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 7 | \( 1 + (0.891 - 0.453i)T \) |
| 11 | \( 1 + (0.104 - 0.994i)T \) |
good | 2 | \( 1 + (-1.93 - 0.306i)T + (0.951 + 0.309i)T^{2} \) |
| 3 | \( 1 + (0.587 + 0.809i)T^{2} \) |
| 13 | \( 1 + (0.951 + 0.309i)T^{2} \) |
| 17 | \( 1 + (0.951 - 0.309i)T^{2} \) |
| 19 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 23 | \( 1 + (1.05 + 1.05i)T + iT^{2} \) |
| 29 | \( 1 + (-0.614 + 1.89i)T + (-0.809 - 0.587i)T^{2} \) |
| 31 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 37 | \( 1 + (0.188 + 0.370i)T + (-0.587 + 0.809i)T^{2} \) |
| 41 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 43 | \( 1 + (0.147 - 0.147i)T - iT^{2} \) |
| 47 | \( 1 + (-0.587 - 0.809i)T^{2} \) |
| 53 | \( 1 + (1.16 + 0.183i)T + (0.951 + 0.309i)T^{2} \) |
| 59 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 61 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 67 | \( 1 + (0.575 - 0.575i)T - iT^{2} \) |
| 71 | \( 1 + (-0.169 - 0.122i)T + (0.309 + 0.951i)T^{2} \) |
| 73 | \( 1 + (0.587 - 0.809i)T^{2} \) |
| 79 | \( 1 + (0.658 - 0.478i)T + (0.309 - 0.951i)T^{2} \) |
| 83 | \( 1 + (-0.951 + 0.309i)T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + (0.951 + 0.309i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.650063904473410572283725691660, −8.440176983721956206750917290235, −7.58443380607511809925174323744, −6.59179753257210675333889283591, −6.26323211091633919204298800069, −5.52258801030442495968202749726, −4.49913874707542323231780972729, −3.85021796216280967126905713236, −2.86987709642949165984141351290, −2.20191771326094293604793026826,
1.65059709486750275026527209005, 2.97227315264438187311900354340, 3.32846676733113639676177370144, 4.34056244840584158492498065998, 5.28283293751579340927980588517, 5.85172588852198234308093919967, 6.59287056238995813700093543948, 7.38303718943146621869792993536, 8.280270645243739026799309453319, 9.583311405876621947376749956686