| L(s) = 1 | + (−0.773 + 0.634i)2-s + (−0.290 − 0.956i)3-s + (0.195 − 0.980i)4-s + (−0.0980 − 0.995i)5-s + (0.831 + 0.555i)6-s + (0.471 + 0.881i)8-s + (−0.831 + 0.555i)9-s + (0.707 + 0.707i)10-s + (−0.995 + 0.0980i)12-s + (−0.923 + 0.382i)15-s + (−0.923 − 0.382i)16-s + (−1.83 − 0.761i)17-s + (0.290 − 0.956i)18-s + (0.728 − 0.598i)19-s + (−0.995 − 0.0980i)20-s + ⋯ |
| L(s) = 1 | + (−0.773 + 0.634i)2-s + (−0.290 − 0.956i)3-s + (0.195 − 0.980i)4-s + (−0.0980 − 0.995i)5-s + (0.831 + 0.555i)6-s + (0.471 + 0.881i)8-s + (−0.831 + 0.555i)9-s + (0.707 + 0.707i)10-s + (−0.995 + 0.0980i)12-s + (−0.923 + 0.382i)15-s + (−0.923 − 0.382i)16-s + (−1.83 − 0.761i)17-s + (0.290 − 0.956i)18-s + (0.728 − 0.598i)19-s + (−0.995 − 0.0980i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.903 + 0.427i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.903 + 0.427i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3951090813\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.3951090813\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (0.773 - 0.634i)T \) |
| 3 | \( 1 + (0.290 + 0.956i)T \) |
| 5 | \( 1 + (0.0980 + 0.995i)T \) |
| good | 7 | \( 1 + (0.382 + 0.923i)T^{2} \) |
| 11 | \( 1 + (-0.555 + 0.831i)T^{2} \) |
| 13 | \( 1 + (-0.980 - 0.195i)T^{2} \) |
| 17 | \( 1 + (1.83 + 0.761i)T + (0.707 + 0.707i)T^{2} \) |
| 19 | \( 1 + (-0.728 + 0.598i)T + (0.195 - 0.980i)T^{2} \) |
| 23 | \( 1 + (-0.247 + 1.24i)T + (-0.923 - 0.382i)T^{2} \) |
| 29 | \( 1 + (0.555 + 0.831i)T^{2} \) |
| 31 | \( 1 + (0.275 - 0.275i)T - iT^{2} \) |
| 37 | \( 1 + (0.195 + 0.980i)T^{2} \) |
| 41 | \( 1 + (-0.923 - 0.382i)T^{2} \) |
| 43 | \( 1 + (0.831 + 0.555i)T^{2} \) |
| 47 | \( 1 + (0.732 - 1.76i)T + (-0.707 - 0.707i)T^{2} \) |
| 53 | \( 1 + (0.523 + 0.979i)T + (-0.555 + 0.831i)T^{2} \) |
| 59 | \( 1 + (-0.980 + 0.195i)T^{2} \) |
| 61 | \( 1 + (1.68 - 0.512i)T + (0.831 - 0.555i)T^{2} \) |
| 67 | \( 1 + (-0.831 + 0.555i)T^{2} \) |
| 71 | \( 1 + (-0.382 - 0.923i)T^{2} \) |
| 73 | \( 1 + (0.382 - 0.923i)T^{2} \) |
| 79 | \( 1 + (0.707 + 1.70i)T + (-0.707 + 0.707i)T^{2} \) |
| 83 | \( 1 + (-1.05 - 1.28i)T + (-0.195 + 0.980i)T^{2} \) |
| 89 | \( 1 + (0.923 - 0.382i)T^{2} \) |
| 97 | \( 1 + iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.949066091555232966350850989499, −8.264658962737004905247091148324, −7.52262936746341036829432220575, −6.75381883557492107933727713257, −6.16863414084870859714936532233, −5.06661836045069982570930027994, −4.64388229389287327390593181022, −2.65467307769339788983749304417, −1.60196133330961280124686693963, −0.37702594486190877847593637267,
1.89466460395169863768179731221, 3.05479386196962167649078366622, 3.71625434849378105863597073827, 4.56298517944447498284716628819, 5.85494777670931655699855485748, 6.65326006610678720637324104497, 7.50876796706630421147745981817, 8.372704099063283796269143651610, 9.215691336993971830829930474754, 9.758915109912552667517419381126