| L(s) = 1 | + (0.290 − 0.956i)2-s + (0.0980 + 0.995i)3-s + (−0.831 − 0.555i)4-s + (−0.881 − 0.471i)5-s + (0.980 + 0.195i)6-s + (−0.773 + 0.634i)8-s + (−0.980 + 0.195i)9-s + (−0.707 + 0.707i)10-s + (0.471 − 0.881i)12-s + (0.382 − 0.923i)15-s + (0.382 + 0.923i)16-s + (−0.360 − 0.871i)17-s + (−0.0980 + 0.995i)18-s + (0.448 − 1.47i)19-s + (0.471 + 0.881i)20-s + ⋯ |
| L(s) = 1 | + (0.290 − 0.956i)2-s + (0.0980 + 0.995i)3-s + (−0.831 − 0.555i)4-s + (−0.881 − 0.471i)5-s + (0.980 + 0.195i)6-s + (−0.773 + 0.634i)8-s + (−0.980 + 0.195i)9-s + (−0.707 + 0.707i)10-s + (0.471 − 0.881i)12-s + (0.382 − 0.923i)15-s + (0.382 + 0.923i)16-s + (−0.360 − 0.871i)17-s + (−0.0980 + 0.995i)18-s + (0.448 − 1.47i)19-s + (0.471 + 0.881i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.941 + 0.336i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.941 + 0.336i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5276777826\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.5276777826\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-0.290 + 0.956i)T \) |
| 3 | \( 1 + (-0.0980 - 0.995i)T \) |
| 5 | \( 1 + (0.881 + 0.471i)T \) |
| good | 7 | \( 1 + (0.923 + 0.382i)T^{2} \) |
| 11 | \( 1 + (0.195 - 0.980i)T^{2} \) |
| 13 | \( 1 + (0.555 - 0.831i)T^{2} \) |
| 17 | \( 1 + (0.360 + 0.871i)T + (-0.707 + 0.707i)T^{2} \) |
| 19 | \( 1 + (-0.448 + 1.47i)T + (-0.831 - 0.555i)T^{2} \) |
| 23 | \( 1 + (1.59 + 1.06i)T + (0.382 + 0.923i)T^{2} \) |
| 29 | \( 1 + (-0.195 - 0.980i)T^{2} \) |
| 31 | \( 1 + (1.17 + 1.17i)T + iT^{2} \) |
| 37 | \( 1 + (-0.831 + 0.555i)T^{2} \) |
| 41 | \( 1 + (0.382 + 0.923i)T^{2} \) |
| 43 | \( 1 + (0.980 + 0.195i)T^{2} \) |
| 47 | \( 1 + (1.83 - 0.761i)T + (0.707 - 0.707i)T^{2} \) |
| 53 | \( 1 + (0.301 - 0.247i)T + (0.195 - 0.980i)T^{2} \) |
| 59 | \( 1 + (0.555 + 0.831i)T^{2} \) |
| 61 | \( 1 + (-1.26 + 0.124i)T + (0.980 - 0.195i)T^{2} \) |
| 67 | \( 1 + (-0.980 + 0.195i)T^{2} \) |
| 71 | \( 1 + (-0.923 - 0.382i)T^{2} \) |
| 73 | \( 1 + (0.923 - 0.382i)T^{2} \) |
| 79 | \( 1 + (-0.707 - 0.292i)T + (0.707 + 0.707i)T^{2} \) |
| 83 | \( 1 + (-1.87 - 0.569i)T + (0.831 + 0.555i)T^{2} \) |
| 89 | \( 1 + (-0.382 + 0.923i)T^{2} \) |
| 97 | \( 1 - iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.341233890264965569172119638188, −8.502577613178969859661558014205, −7.83272653017422601514878818753, −6.50008310946497470168400019603, −5.32836032595504352129068504972, −4.72296883819786786179717371795, −4.08279286687123226701748298128, −3.24488204389432868335952814816, −2.28243356782316659560187739051, −0.33752620505131144918693475944,
1.77649817962920882464801964288, 3.39825244546996647850299339220, 3.77321542292589466351670339441, 5.13658745463758406661343743544, 6.02393786499147082075937218000, 6.61842445307700238822214875808, 7.44397252364453166230592184291, 8.029581844724515501228698718632, 8.410480722255884649605470771365, 9.503028255640614495664100111077