| L(s) = 1 | + (−0.634 − 0.773i)2-s + (0.956 − 0.290i)3-s + (−0.195 + 0.980i)4-s + (−0.995 + 0.0980i)5-s + (−0.831 − 0.555i)6-s + (0.881 − 0.471i)8-s + (0.831 − 0.555i)9-s + (0.707 + 0.707i)10-s + (0.0980 + 0.995i)12-s + (−0.923 + 0.382i)15-s + (−0.923 − 0.382i)16-s + (0.181 + 0.0750i)17-s + (−0.956 − 0.290i)18-s + (1.11 + 1.36i)19-s + (0.0980 − 0.995i)20-s + ⋯ |
| L(s) = 1 | + (−0.634 − 0.773i)2-s + (0.956 − 0.290i)3-s + (−0.195 + 0.980i)4-s + (−0.995 + 0.0980i)5-s + (−0.831 − 0.555i)6-s + (0.881 − 0.471i)8-s + (0.831 − 0.555i)9-s + (0.707 + 0.707i)10-s + (0.0980 + 0.995i)12-s + (−0.923 + 0.382i)15-s + (−0.923 − 0.382i)16-s + (0.181 + 0.0750i)17-s + (−0.956 − 0.290i)18-s + (1.11 + 1.36i)19-s + (0.0980 − 0.995i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.427 + 0.903i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.427 + 0.903i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.018600579\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.018600579\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (0.634 + 0.773i)T \) |
| 3 | \( 1 + (-0.956 + 0.290i)T \) |
| 5 | \( 1 + (0.995 - 0.0980i)T \) |
| good | 7 | \( 1 + (0.382 + 0.923i)T^{2} \) |
| 11 | \( 1 + (0.555 - 0.831i)T^{2} \) |
| 13 | \( 1 + (0.980 + 0.195i)T^{2} \) |
| 17 | \( 1 + (-0.181 - 0.0750i)T + (0.707 + 0.707i)T^{2} \) |
| 19 | \( 1 + (-1.11 - 1.36i)T + (-0.195 + 0.980i)T^{2} \) |
| 23 | \( 1 + (-0.301 + 1.51i)T + (-0.923 - 0.382i)T^{2} \) |
| 29 | \( 1 + (-0.555 - 0.831i)T^{2} \) |
| 31 | \( 1 + (-0.275 + 0.275i)T - iT^{2} \) |
| 37 | \( 1 + (-0.195 - 0.980i)T^{2} \) |
| 41 | \( 1 + (-0.923 - 0.382i)T^{2} \) |
| 43 | \( 1 + (-0.831 - 0.555i)T^{2} \) |
| 47 | \( 1 + (0.222 - 0.536i)T + (-0.707 - 0.707i)T^{2} \) |
| 53 | \( 1 + (-0.979 + 0.523i)T + (0.555 - 0.831i)T^{2} \) |
| 59 | \( 1 + (0.980 - 0.195i)T^{2} \) |
| 61 | \( 1 + (-0.273 - 0.902i)T + (-0.831 + 0.555i)T^{2} \) |
| 67 | \( 1 + (0.831 - 0.555i)T^{2} \) |
| 71 | \( 1 + (-0.382 - 0.923i)T^{2} \) |
| 73 | \( 1 + (0.382 - 0.923i)T^{2} \) |
| 79 | \( 1 + (0.707 + 1.70i)T + (-0.707 + 0.707i)T^{2} \) |
| 83 | \( 1 + (-1.28 + 1.05i)T + (0.195 - 0.980i)T^{2} \) |
| 89 | \( 1 + (0.923 - 0.382i)T^{2} \) |
| 97 | \( 1 + iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.104722891514288549729153344851, −8.503275602202487649729621730952, −7.84678585022373105762068199031, −7.36641077532145490808400080968, −6.43082357025525085673245609806, −4.80141593045719154915762081663, −3.86847984486735762056836613492, −3.28669763754531592469725556305, −2.34250871460363798647719525194, −1.05985424238328155739961515779,
1.23277635877353839423090253476, 2.77393738830686480813819873954, 3.75538015291649026585630210803, 4.74949769977221128782557489708, 5.40788020389105052250072097987, 6.85317240304341620721806424356, 7.34758826983682446912340856222, 7.968114601073156765206305290463, 8.688430277386475668554513416842, 9.359177006557406671355229361133