| L(s)  = 1  |     + (0.707 − 0.707i)3-s     + (0.707 + 0.707i)5-s     + (−1 − i)7-s     − 1.00i·9-s     − 1.41i·11-s         + 1.00·15-s             − 1.41·21-s         + 1.00i·25-s     + (−0.707 − 0.707i)27-s     − 1.41i·29-s     + 2i·31-s     + (−1.00 − 1.00i)33-s     − 1.41i·35-s                     + (0.707 − 0.707i)45-s         + i·49-s    + ⋯ | 
 
| L(s)  = 1  |     + (0.707 − 0.707i)3-s     + (0.707 + 0.707i)5-s     + (−1 − i)7-s     − 1.00i·9-s     − 1.41i·11-s         + 1.00·15-s             − 1.41·21-s         + 1.00i·25-s     + (−0.707 − 0.707i)27-s     − 1.41i·29-s     + 2i·31-s     + (−1.00 − 1.00i)33-s     − 1.41i·35-s                     + (0.707 − 0.707i)45-s         + i·49-s    + ⋯ | 
 
\[\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.229 + 0.973i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.229 + 0.973i)\, \overline{\Lambda}(1-s) \end{aligned}\]
  Particular Values
  
  
        
      |  \(L(\frac{1}{2})\)  | 
            \(\approx\) | 
             \(1.430779601\)  | 
    
    
      |  \(L(\frac12)\)  | 
            \(\approx\) | 
      
       \(1.430779601\)  | 
    
    
        
      |  \(L(1)\)  | 
             | 
       not available  | 
          
    
      |  \(L(1)\)  | 
             | 
       not available  | 
          
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
 | $p$ | $F_p(T)$ | 
|---|
| bad | 2 |  \( 1 \)  | 
 | 3 |  \( 1 + (-0.707 + 0.707i)T \)  | 
 | 5 |  \( 1 + (-0.707 - 0.707i)T \)  | 
| good | 7 |  \( 1 + (1 + i)T + iT^{2} \)  | 
 | 11 |  \( 1 + 1.41iT - T^{2} \)  | 
 | 13 |  \( 1 - iT^{2} \)  | 
 | 17 |  \( 1 + iT^{2} \)  | 
 | 19 |  \( 1 - T^{2} \)  | 
 | 23 |  \( 1 + iT^{2} \)  | 
 | 29 |  \( 1 + 1.41iT - T^{2} \)  | 
 | 31 |  \( 1 - 2iT - T^{2} \)  | 
 | 37 |  \( 1 + iT^{2} \)  | 
 | 41 |  \( 1 - T^{2} \)  | 
 | 43 |  \( 1 + iT^{2} \)  | 
 | 47 |  \( 1 - iT^{2} \)  | 
 | 53 |  \( 1 + iT^{2} \)  | 
 | 59 |  \( 1 - 1.41T + T^{2} \)  | 
 | 61 |  \( 1 - T^{2} \)  | 
 | 67 |  \( 1 - iT^{2} \)  | 
 | 71 |  \( 1 + T^{2} \)  | 
 | 73 |  \( 1 + (-1 - i)T + iT^{2} \)  | 
 | 79 |  \( 1 - 2T + T^{2} \)  | 
 | 83 |  \( 1 - iT^{2} \)  | 
 | 89 |  \( 1 + T^{2} \)  | 
 | 97 |  \( 1 + (1 - i)T - iT^{2} \)  | 
|  show more |  | 
| show less |  | 
 
     \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−9.235013473790616003098099410677, −8.419853316878536067506712252319, −7.59866948321653186934864673513, −6.66959394052918352607921649706, −6.45731506835580998925713644539, −5.45923872534482684778811878080, −3.81210466654432587232686181499, −3.28023380292448140972973244351, −2.41901638947738006320983494939, −0.989495845916866369927053587124, 
1.94802535147374104621354704193, 2.60758888658230569363975613671, 3.75813702065245942493599098377, 4.72903011280421895005671350802, 5.40806397964301560766050498366, 6.27174018358872817886945580480, 7.27325772261590148442805856320, 8.259627556676278746324442074741, 9.016085130355660015946740466055, 9.591924143184101348905935909882