Properties

Label 2-1920-1.1-c3-0-83
Degree $2$
Conductor $1920$
Sign $-1$
Analytic cond. $113.283$
Root an. cond. $10.6434$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s − 5·5-s + 4·7-s + 9·9-s + 6·11-s + 44·13-s − 15·15-s − 84·17-s + 8·19-s + 12·21-s − 48·23-s + 25·25-s + 27·27-s − 90·29-s − 166·31-s + 18·33-s − 20·35-s − 156·37-s + 132·39-s + 166·41-s − 460·43-s − 45·45-s + 448·47-s − 327·49-s − 252·51-s + 470·53-s − 30·55-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s + 0.215·7-s + 1/3·9-s + 0.164·11-s + 0.938·13-s − 0.258·15-s − 1.19·17-s + 0.0965·19-s + 0.124·21-s − 0.435·23-s + 1/5·25-s + 0.192·27-s − 0.576·29-s − 0.961·31-s + 0.0949·33-s − 0.0965·35-s − 0.693·37-s + 0.541·39-s + 0.632·41-s − 1.63·43-s − 0.149·45-s + 1.39·47-s − 0.953·49-s − 0.691·51-s + 1.21·53-s − 0.0735·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1920\)    =    \(2^{7} \cdot 3 \cdot 5\)
Sign: $-1$
Analytic conductor: \(113.283\)
Root analytic conductor: \(10.6434\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1920,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - p T \)
5 \( 1 + p T \)
good7 \( 1 - 4 T + p^{3} T^{2} \)
11 \( 1 - 6 T + p^{3} T^{2} \)
13 \( 1 - 44 T + p^{3} T^{2} \)
17 \( 1 + 84 T + p^{3} T^{2} \)
19 \( 1 - 8 T + p^{3} T^{2} \)
23 \( 1 + 48 T + p^{3} T^{2} \)
29 \( 1 + 90 T + p^{3} T^{2} \)
31 \( 1 + 166 T + p^{3} T^{2} \)
37 \( 1 + 156 T + p^{3} T^{2} \)
41 \( 1 - 166 T + p^{3} T^{2} \)
43 \( 1 + 460 T + p^{3} T^{2} \)
47 \( 1 - 448 T + p^{3} T^{2} \)
53 \( 1 - 470 T + p^{3} T^{2} \)
59 \( 1 - 26 T + p^{3} T^{2} \)
61 \( 1 - 206 T + p^{3} T^{2} \)
67 \( 1 + 548 T + p^{3} T^{2} \)
71 \( 1 - 392 T + p^{3} T^{2} \)
73 \( 1 - 30 T + p^{3} T^{2} \)
79 \( 1 + 750 T + p^{3} T^{2} \)
83 \( 1 + 4 T + p^{3} T^{2} \)
89 \( 1 + 186 T + p^{3} T^{2} \)
97 \( 1 - 530 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.643423497368832829665913917168, −7.71379578285398550783329568990, −7.00103966709819475863458978856, −6.15714796241499391932882928826, −5.12826373465534996579168197212, −4.10376920951538907644697368025, −3.55835073233289306493657518613, −2.37005341192056672670135619088, −1.40091551145768825362113310234, 0, 1.40091551145768825362113310234, 2.37005341192056672670135619088, 3.55835073233289306493657518613, 4.10376920951538907644697368025, 5.12826373465534996579168197212, 6.15714796241499391932882928826, 7.00103966709819475863458978856, 7.71379578285398550783329568990, 8.643423497368832829665913917168

Graph of the $Z$-function along the critical line