L(s) = 1 | − 81·3-s + 4.03e3·7-s + 6.56e3·9-s + 3.58e4·13-s + 2.58e5·19-s − 3.26e5·21-s + 3.90e5·25-s − 5.31e5·27-s − 1.80e6·31-s − 5.03e5·37-s − 2.90e6·39-s − 3.49e6·43-s + 1.05e7·49-s − 2.09e7·57-s + 2.38e7·61-s + 2.64e7·63-s + 5.42e6·67-s + 1.61e7·73-s − 3.16e7·75-s − 1.88e7·79-s + 4.30e7·81-s + 1.44e8·91-s + 1.46e8·93-s + 1.76e8·97-s + 4.44e7·103-s − 2.03e8·109-s + 4.07e7·111-s + ⋯ |
L(s) = 1 | − 3-s + 1.68·7-s + 9-s + 1.25·13-s + 1.98·19-s − 1.68·21-s + 25-s − 27-s − 1.95·31-s − 0.268·37-s − 1.25·39-s − 1.02·43-s + 1.82·49-s − 1.98·57-s + 1.72·61-s + 1.68·63-s + 0.269·67-s + 0.569·73-s − 75-s − 0.484·79-s + 81-s + 2.10·91-s + 1.95·93-s + 1.99·97-s + 0.394·103-s − 1.43·109-s + 0.268·111-s + ⋯ |
Λ(s)=(=(192s/2ΓC(s)L(s)Λ(9−s)
Λ(s)=(=(192s/2ΓC(s+4)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
192
= 26⋅3
|
Sign: |
1
|
Analytic conductor: |
78.2166 |
Root analytic conductor: |
8.84402 |
Motivic weight: |
8 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
χ192(65,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 192, ( :4), 1)
|
Particular Values
L(29) |
≈ |
2.294795440 |
L(21) |
≈ |
2.294795440 |
L(5) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+p4T |
good | 5 | (1−p4T)(1+p4T) |
| 7 | 1−4034T+p8T2 |
| 11 | (1−p4T)(1+p4T) |
| 13 | 1−35806T+p8T2 |
| 17 | (1−p4T)(1+p4T) |
| 19 | 1−258526T+p8T2 |
| 23 | (1−p4T)(1+p4T) |
| 29 | (1−p4T)(1+p4T) |
| 31 | 1+1809406T+p8T2 |
| 37 | 1+503522T+p8T2 |
| 41 | (1−p4T)(1+p4T) |
| 43 | 1+3492194T+p8T2 |
| 47 | (1−p4T)(1+p4T) |
| 53 | (1−p4T)(1+p4T) |
| 59 | (1−p4T)(1+p4T) |
| 61 | 1−23826526T+p8T2 |
| 67 | 1−5421406T+p8T2 |
| 71 | (1−p4T)(1+p4T) |
| 73 | 1−16169282T+p8T2 |
| 79 | 1+18887038T+p8T2 |
| 83 | (1−p4T)(1+p4T) |
| 89 | (1−p4T)(1+p4T) |
| 97 | 1−176908034T+p8T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.28482388997223802256791078736, −10.39223498721639189144440755260, −9.043911697744886252759333097469, −7.912123281311546918097956985348, −6.97214534267064460346636515823, −5.56541434739854537542664646704, −4.98680530962777232607116562015, −3.67859969849509510900533029740, −1.67013562884374873004584515589, −0.906491300799226674814448844546,
0.906491300799226674814448844546, 1.67013562884374873004584515589, 3.67859969849509510900533029740, 4.98680530962777232607116562015, 5.56541434739854537542664646704, 6.97214534267064460346636515823, 7.912123281311546918097956985348, 9.043911697744886252759333097469, 10.39223498721639189144440755260, 11.28482388997223802256791078736