L(s) = 1 | + (1 − 2.82i)3-s − 5.65i·5-s + 6·7-s + (−7.00 − 5.65i)9-s + 5.65i·11-s − 10·13-s + (−16.0 − 5.65i)15-s − 22.6i·17-s + 2·19-s + (6 − 16.9i)21-s + 11.3i·23-s − 7.00·25-s + (−23.0 + 14.1i)27-s − 16.9i·29-s + 22·31-s + ⋯ |
L(s) = 1 | + (0.333 − 0.942i)3-s − 1.13i·5-s + 0.857·7-s + (−0.777 − 0.628i)9-s + 0.514i·11-s − 0.769·13-s + (−1.06 − 0.377i)15-s − 1.33i·17-s + 0.105·19-s + (0.285 − 0.808i)21-s + 0.491i·23-s − 0.280·25-s + (−0.851 + 0.523i)27-s − 0.585i·29-s + 0.709·31-s + ⋯ |
Λ(s)=(=(192s/2ΓC(s)L(s)(−0.333+0.942i)Λ(3−s)
Λ(s)=(=(192s/2ΓC(s+1)L(s)(−0.333+0.942i)Λ(1−s)
Degree: |
2 |
Conductor: |
192
= 26⋅3
|
Sign: |
−0.333+0.942i
|
Analytic conductor: |
5.23162 |
Root analytic conductor: |
2.28727 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ192(65,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 192, ( :1), −0.333+0.942i)
|
Particular Values
L(23) |
≈ |
0.947179−1.33951i |
L(21) |
≈ |
0.947179−1.33951i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(−1+2.82i)T |
good | 5 | 1+5.65iT−25T2 |
| 7 | 1−6T+49T2 |
| 11 | 1−5.65iT−121T2 |
| 13 | 1+10T+169T2 |
| 17 | 1+22.6iT−289T2 |
| 19 | 1−2T+361T2 |
| 23 | 1−11.3iT−529T2 |
| 29 | 1+16.9iT−841T2 |
| 31 | 1−22T+961T2 |
| 37 | 1−6T+1.36e3T2 |
| 41 | 1−33.9iT−1.68e3T2 |
| 43 | 1−82T+1.84e3T2 |
| 47 | 1+67.8iT−2.20e3T2 |
| 53 | 1−62.2iT−2.80e3T2 |
| 59 | 1−73.5iT−3.48e3T2 |
| 61 | 1−86T+3.72e3T2 |
| 67 | 1−2T+4.48e3T2 |
| 71 | 1−124.iT−5.04e3T2 |
| 73 | 1−82T+5.32e3T2 |
| 79 | 1+10T+6.24e3T2 |
| 83 | 1+73.5iT−6.88e3T2 |
| 89 | 1+33.9iT−7.92e3T2 |
| 97 | 1+94T+9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.07533194086664122703912395565, −11.46749126503602838245904584622, −9.751796755197434385074848354339, −8.860349239253088693888270816133, −7.895983195278810667827954871521, −7.11015658890692328733828258675, −5.50803362391592836641157649931, −4.51932106171602055780806225932, −2.44784232092364310126463474209, −0.979802016761469266475686427400,
2.44172152162155152725027068676, 3.71510029959258957485593944174, 4.97674300282699422541812807906, 6.28255053067563499979673230672, 7.68884831408676266610086175556, 8.575045983740774084667128233337, 9.807868415336828821423410667152, 10.77243614813820501516033385695, 11.15273418806810480033068710746, 12.52270550173641442467250105425