Properties

Label 2-192-3.2-c2-0-11
Degree $2$
Conductor $192$
Sign $-0.333 + 0.942i$
Analytic cond. $5.23162$
Root an. cond. $2.28727$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1 − 2.82i)3-s − 5.65i·5-s + 6·7-s + (−7.00 − 5.65i)9-s + 5.65i·11-s − 10·13-s + (−16.0 − 5.65i)15-s − 22.6i·17-s + 2·19-s + (6 − 16.9i)21-s + 11.3i·23-s − 7.00·25-s + (−23.0 + 14.1i)27-s − 16.9i·29-s + 22·31-s + ⋯
L(s)  = 1  + (0.333 − 0.942i)3-s − 1.13i·5-s + 0.857·7-s + (−0.777 − 0.628i)9-s + 0.514i·11-s − 0.769·13-s + (−1.06 − 0.377i)15-s − 1.33i·17-s + 0.105·19-s + (0.285 − 0.808i)21-s + 0.491i·23-s − 0.280·25-s + (−0.851 + 0.523i)27-s − 0.585i·29-s + 0.709·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 192 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.333 + 0.942i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 192 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.333 + 0.942i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(192\)    =    \(2^{6} \cdot 3\)
Sign: $-0.333 + 0.942i$
Analytic conductor: \(5.23162\)
Root analytic conductor: \(2.28727\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{192} (65, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 192,\ (\ :1),\ -0.333 + 0.942i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.947179 - 1.33951i\)
\(L(\frac12)\) \(\approx\) \(0.947179 - 1.33951i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (-1 + 2.82i)T \)
good5 \( 1 + 5.65iT - 25T^{2} \)
7 \( 1 - 6T + 49T^{2} \)
11 \( 1 - 5.65iT - 121T^{2} \)
13 \( 1 + 10T + 169T^{2} \)
17 \( 1 + 22.6iT - 289T^{2} \)
19 \( 1 - 2T + 361T^{2} \)
23 \( 1 - 11.3iT - 529T^{2} \)
29 \( 1 + 16.9iT - 841T^{2} \)
31 \( 1 - 22T + 961T^{2} \)
37 \( 1 - 6T + 1.36e3T^{2} \)
41 \( 1 - 33.9iT - 1.68e3T^{2} \)
43 \( 1 - 82T + 1.84e3T^{2} \)
47 \( 1 + 67.8iT - 2.20e3T^{2} \)
53 \( 1 - 62.2iT - 2.80e3T^{2} \)
59 \( 1 - 73.5iT - 3.48e3T^{2} \)
61 \( 1 - 86T + 3.72e3T^{2} \)
67 \( 1 - 2T + 4.48e3T^{2} \)
71 \( 1 - 124. iT - 5.04e3T^{2} \)
73 \( 1 - 82T + 5.32e3T^{2} \)
79 \( 1 + 10T + 6.24e3T^{2} \)
83 \( 1 + 73.5iT - 6.88e3T^{2} \)
89 \( 1 + 33.9iT - 7.92e3T^{2} \)
97 \( 1 + 94T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.07533194086664122703912395565, −11.46749126503602838245904584622, −9.751796755197434385074848354339, −8.860349239253088693888270816133, −7.895983195278810667827954871521, −7.11015658890692328733828258675, −5.50803362391592836641157649931, −4.51932106171602055780806225932, −2.44784232092364310126463474209, −0.979802016761469266475686427400, 2.44172152162155152725027068676, 3.71510029959258957485593944174, 4.97674300282699422541812807906, 6.28255053067563499979673230672, 7.68884831408676266610086175556, 8.575045983740774084667128233337, 9.807868415336828821423410667152, 10.77243614813820501516033385695, 11.15273418806810480033068710746, 12.52270550173641442467250105425

Graph of the $Z$-function along the critical line